
 

ISSN 0020-4412, Instruments and Experimental Techniques, 2006, Vol. 49, No. 3, pp. 435–437. © Pleiades Publishing, Inc., 2006.
Original Russian Text © D.M. Edgorova, S.S. Dzhakhanov, A.V. Karimov, Sh.M. Kuliev, 2006, published in Pribory i Tekhnika Eksperimenta, 2006, No. 3, pp. 149–151.

 

435

 

Thermoelectric materials are widely used in the
development of independent electric-power sources
[1]. Quality factor 

 

Z

 

 of thermoelectric materials is
determined by the values of thermal emf 

 

α

 

, thermal
conductivity 

 

χ

 

, and electrical conductivity 

 

σ

 

:

 

Z

 

 = 

 

α

 

2

 

σ

 

/

 

χ

 

. (1)

 

The known methods and devices for complex measure-
ments of thermoelectric parameters of semiconductor
and composite materials are fairly intricate [2–4]. In
simpler techniques, e.g., such as that described in [5],
one has to perform several measurements, each of
which introduces its own errors into the final result, to
determine one parameter.

In this study, we describe a modified version of this
technique, which is suitable for measuring the thermal
emf and thermal conductivity of conducting materi-
als—semiconductors and semimetals—as well as com-
posite materials [6]. A distinguishing feature of this
technique is the use of additional thermal reservoirs—
metal layers with a high thermal conductivity located at
the ends of a long sample. The presence of such layers
allows measurements of the thermal emf to be mea-
sured upon interruption of a Peltier current.

Figure 1 shows a sample prepared for such measure-
ments. Rectangular sample 

 

1

 

 is manufactured from a
current-conducting material. Metal contacts 

 

2

 

 applied
to the sample’s ends are in contact with a thick layer 

 

3

 

of a high-conductivity (e.g., tin-based) material of vol-

ume 

 

S

 

k

 

, where 

 

S

 

k

 

 is the area of the contact.Sk

 

The electric circuit for performing measurements is
shown in Fig. 2. Current lead-ins 

 

2

 

 connect the sample
to current interrupter–switcher 

 

3

 

, the circuit of which
includes ammeter 

 

4

 

. The temperature at the sample’s
ends is measured by thermocouples 

 

5

 

 and 

 

6

 

. Using
switches 

 

7

 

 and 

 

8

 

, the ends are switched alternately to
galvanometer 

 

9

 

.

The measurement procedure is as follows. First,

the initial values of temperatures  and  at the sam-
ple’s ends are measured by thermocouples 

 

5

 

 and 

 

6

 

 at
zero current (switch 

 

3

 

 in position II). A direct current is
then fed to the sample from source 

 

10

 

 (switch 

 

3

 

 in posi-
tion I) and a specified current value is set. After a
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Fig. 1.

 

 Sample prepared for experiments: (

 

1

 

) sample of a
current-conducting material, (

 

2

 

) metal contacts, (

 

3

 

) layers
of a material with a high specific heat, and (

 

4

 

) current lead-ins.
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steady-state regime is established, the current is mea-
sured. Subsequently, switches 

 

7

 

 and 

 

8

 

 are switched in
turn to positions 

 

T

 

1

 

 and 

 

T

 

2

 

, and the temperature differ-
ence along the sample is measured:

 

∆

 

T

 

 = 

 

|

 

T

 

1

 

|

 

 – 

 

|

 

T

 

2

 

|,

 

(2)

 

where 

 

T

 

1

 

 =  – 

 

 and 

 

T

 

2

 

 =  – 

 

. The current
is then interrupted (switch 

 

3

 

 is set to position II), and
the instantaneous values of potential difference 

 

U

 

 along
the sample are measured at a zero current (the time con-
stant of establishing the thermal equilibrium along the
sample far exceeds the time constants of the thermo-
couples and galvanometer). From these data, integral
thermal emf 

 

α

 

 = 

 

U

 

/

 

∆

 

T

 

 can be found.
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Using additional data obtained in measurements, the
thermal conductivity of the sample can simultaneously
be determined from the formula

 

α

 

Ι  

 

= χ∆

 

TS

 

/

 

l

 

, (3)

 

where 

 

α

 

 is the thermal emf, 

 

I

 

 is the direct current,  is
the average temperature, 

 

χ

 

 is the thermal conductivity,

 

∆

 

T

 

 is the temperature difference between the sample’s
ends, 

 

l

 

 is the length of the sample, and 

 

S

 

 is its cross sec-
tion.

The table presents the results from measurements of
the thermal emf and thermal conductivity of semicon-
ductor samples based on gallium arsenide and silicon,
as well as of a pressed sample and ingots of bismuth tel-
luride and antimony, which were published in [7, 8].
The thermal emf values measured by our method are in
satisfactory agreement with the data obtained by
another method—the heating of one of the sample’s
ends [3].

The ambient temperature that was lower than the
average temperature of the sample during measure-
ments can explain the insignificant difference of our
data from those obtained by the other method. As a
result, the heat removal from the sample’s center deter-
mined an additional contribution to the thermal emf
measured.

Hence, additional metal layers with a high specific
heat that serve to stabilize the temperature upon current
interruption allow measurements of the thermal emf,
the thermal conductivity, and the electrical conductivity
of samples in a single experiment. The method pro-
posed can be used in studies of thermoelectric and ther-
mal characteristic of thermoelectric semiconductors
and materials used in the semiconductor industry.
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Fig. 2.

 

 Circuit diagram for determining the thermal emf and
thermal conductivity of a sample: (

 

1

 

) sample prepared for
experiments, (

 

2

 

) current lead-ins, (

 

3

 

) interrupting switch,
(

 

4

 

) ammeter, (

 

5

 

,

 

 6

 

) thermocouples, (

 

7

 

,

 

 8

 

) switches, (

 

9

 

) gal-
vanometer, (

 

10

 

) power supply.

 

Table

 

Sample Gradient

 

∆

 

T

 

, 

 

°

 

C

Average
temperature

, 

 

°

 

C

Thermal emf

 

α

 

, 

 

µ

 

V/

 

°

 

C

Thermal emf measured 
upon heating one sam-

ple’s end [3]

Thermal
conductivity,
W/(

 

°

 

C · cm)

 

n

 

-GaAs 0.8 30.6 210 1.6 

 

×

 

 10

 

–2

 

n

 

-Si 1.5 30.3 300 1.74 

 

×

 

 10

 

–2

 

(BiSb)

 

2

 

Te3 (pressed) 1.0 30.1 297 295 2.6 × 10–2

(BiSb)2Te3 (ingot) 1.0 30.1 200 190–200 1.4 × 10–2
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