

K

YOUNG SCIENTISTS CONFERENCE OF PHYSICAL-TECHNICAL INSTITUTE

ANJUMAN MATERIALLARI TO'PLAMI

O'ZBEKISTON RESPUBILKASI FANLAR AKADEMIYASI FIZIKA-TEXNIKA INSTITUTI

ACADEMY OF SCIENCES OF THE REPUBLIC OF UZBEKISTAN PHYSICAL-TECHNICAL INSTITUTE

FIZIKA-TEXNIKA INSTITUTI YOSH OLIMLAR KONFERENSIYASI

YOUNG SCIENTISTS CONFERENCE OF PHYSICAL-TECHNICAL INSTITUTE

ANJUMAN MATERIALLARI TO'PLAMI

PROCEEDINGS OF CONFERENCE

13 - 14 dekabr

Toshkent 2021 y.

O'ZBEKISTON RESPUBILKASI FANLAR AKADEMIYASI FIZIKA-TEXNIKA INSTITUTI

Tashkiliy qo'mita

Olimov X.K. – rais, prof. f.-m.f.d. Abdulxayev O.A. – rais o'rinbosari., kat.i.x., PhD Saidxonov N.Sh. – prof. f.-m.f.d., ilmiy kotib Gulamov K.G. – akademik Muminov R.A. – akademik Razikov T.M. – prof. f.-m.f.d. Olimov K. – prof. f.-m.f.d. Yodgorova D.M. – prof. t.f.d. Usmonov Sh.N. – kat.i.x. f.-m.f.d. Bayzakov B.B. – kat.i.x., f.-m.f.n. Axatov J.S. – kat.i.x., t.f.n. Ergashev B.A. – kat.i.x., PhD Raxmonov U. – Kasaba uyushmasi raisi

Ekspert komissiya

Olimov X.K. – rais, Abdulxayev O.A. – rais o'rinbosari., Saidxonov N.Sh. – ilmiy kotib Olimov K. Yodgorova D.M. Usmonov Sh.N. Radjabov S.A. Kuchkarov K.M. Bayzakov B.B. Axatov J.S. Ergashev B.A.

© O'zR FA, Fizika-Texnika Instituti, 2021 y.

UZBEKISTAN ACADEMY OF SCIENCES PHYSICAL-TECHNICAL INSTITUTE

Organizing Committee

Olimov Kh.K. – Chair, prof. DSc. Abdulkhayev O.A. – Co-Chair., Sen. Res., PhD Saidkhonov N.Sh. – Prof. DSc. Gulamov K.G. – Academician Muminov R.A. – Academician Razykov T.M. – Prof. DSc. Olimov K. – Prof. DSc. Yodgorova D.M. – Prof. DSc. Usmonov Sh.N. – Sen. Res., DSc. Bayzakov B.B. – Sen. Res., PhD Akhatov J.S. – Sen. Res., PhD Ergashev B.A. – Sen. Res., PhD Rakhmonov U. – Chairman of the trade union

Expert Committee

Olimov Kh.K. – Chair, Abdulkhayev O.A. – Co-Chair., Saidkhonov N.Sh. – Scientific secretary Olimov K. Yodgorova D.M. Usmonov Sh.N. Radjabov S.A. Kuchkarov K.M. Bayzakov B.B. Akhatov J.S. Ergashev B.A.

© Physical-Technical Institute, AS RUz, 2021.

MUNDARIJA

ФОТОЭЛЕКТРИК БАТАРЕЯЛАРИ АСОСИДА ЮКОРИ САМАРАЛИ ФОТО-ИССИКЛИК БАТАРЕЯЛАРИ ВА КУРИЛМАЛАРИНИ ЯРАТИШ У.Р. Хакар	7
У.Р. Холов КУЁШ ИССИКЛИК КУРИЛМАЛАРИДА ИССИКЛИК АККУМУЛЯТОРЛАРИ СИФАТИДА ФАЗАВИЙ ЎЗГАРУВЧИ МАТЕРИАЛЛАРДАН ФОЙДАЛАНИШ	1
Д.У. Турапова	9
ДИФРАКТОГРАММА И ФОТОЛЮМИНЕСЦЕНЦИЯ ЭПТАКСИАЛЬНОЙ ПЛЕНКИ (Si2)1-x(GaN)x Т.Т. Ишниязов	11
ЎЗБЕКИСТОН ҲУДУДЛАРИДА ҚАЙТА ТИКЛАНУВЧИ ЭНЕРГИЯ МАНБАЛАРИ ЭНЕРГО-ИҚТИСОДИЙ САЛОХИЯТНИ БАШОРАТЛАШДА ҲАЛҚАРО МЕТРЕОЛОГИК КУЗАТУВЛАР	
Э.Ю. Рахимов	13
БАЗА СОХАСИ ТЎЛИҚ КАМБАҒАЛЛАШГАН КРЕМНИЙЛИ СТРУКТУРАЛАР- НИНГ ХАРОРАТГА СЕЗГИРЛИГИ ХУСУСИЯТЛАРИ Р.Р. Бебитов	15
ХИМИЧЕСКИЙ ПОТЕНЦИАЛ ДВУМЕРНОГО ЭЛЕКТРОННОГО ГАЗА В МАГНИТНОМ ПОЛЕ Б.Т. Абдулазизов, П.Ж. Байматов, М.С. Тохиржонов	17
РАЗРАБОТКА ВЫСОКОЭФФЕКТИВНЫХ ПОЛУПРОВОДНИКОВЫХ ДЕТЕКТОРОВ ДЛЯ РАДОНОМЕТРОВ И ИССЛЕДОВАНИЕ ОБЪЕМНОЙ АКТИВНОСТИ ПРОДУКТОВ РАСПАДА РАДОНА Б.С. Раджапов	19
ВЛИЯНИЕ АТОМОВ МОЛЕКУЛ ZnSe И Ge НА ФОТОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА КРЕМНИЯ К.А. Амонов	21
INVESTIGATING PHYSICAL PROPERTIES OF ANTIMONY SELENIDE THIN FILMS FABRICATED BY CMBD METHOD R.R. Khurramov	23
Zn _x Sn _{1-x} Se ЮПҚА ҚАТЛАМЛАРИНИНГ ЭЛЕКТРОФИЗИК ХОССАЛАРИ Р.Т. Йўлдошов	26
MULTIPLICITY DEPENDENCIES OF MIDRAPIDITY TRANSVERSE MOMENTUM DISTRIBUTIONS OF THE CHARGED PIONS AND KAONS, PROTONS AND ANTIPROTONS IN PROTON-PROTON COLLISIONS AT (s) ^{1/2} =7 TeV AT THE LHC Khusniddin K, Olimoy, Fu-Hu Liu, Kobil A, Musaey, Maratbek Z, Shodmonoy,	28
MULTIPLICITY DEPENDENCIES OF MIDRAPIDITY TRANSVERSE MOMENTUM SPECTRA OF IDENTIFIED CHARGED PARTICLES IN <i>p</i> + <i>p</i> COLLISIONS AT (s) ^{1/2} =13 TeV AT LHC Khusniddin K. Olimoy, Eu-Hu Liu, Kadyr G. Gulamoy, Kobil A. Musaey, Kosim Olimoy	
Boburbek J. Tukhtaev, Nasir Sh. Saidkhanov, Kobil I. Umarov, Bekhzod S. Yuldashev	30

ВЛИЯНИЕ СЛАБОЙ ВАРИЗОННОСТИ НА ИНЖЕКЦИОННЫЕ ДИФФУЗИОННЫЕ РЕЖИМЫ ПЕРЕНОСА ТОКА В ПОЛУПРОВОДНИКОВЫХ <i>p-n-</i> СТРУКТУРАХ Ж.М. Абдиев	32
VARIATIONAL APPROXIMATION FOR 3D QUANTUM DROPLETS R.O. Sherzod	34
Sb ₂ Se ₃ YUPQA QATLAMLARINING STRUKTURAVIY, MORFOLOGIK, OPTIK VA ELEKTROFIZIK XOSSALARIGA SELENIZATSIYANING TASIRI A.N. Olimov	35
P-N OʻTISHLARDAGI TOK TASHISH JARAYONLARINING UMUMLASHGAN NAZARIYASI J.Sh. Abdullayev, O.A. Abdulxayev	36
QUYOSH ENERGIYASIDA OLINGAN Bi _{1,7} Pb _{0,3} Sr ₂ Ca _(n-1) Cu _(n) O _y (n=9-20) O'TA O'TKAZUVCHAN QATORNING ELEKTROFIZIK XUSUSIYATLARINI O'RGANISH. E.B. Eshonqulov	39
МУЖАССАМЛАШГАН ҚУЁШ НУРЛАРИ ОҚИМИДА СН4 ВА СеО2 АСОСИДА ТЕРМОКИМЁВИЙ ЦИКЛ ОРҚАЛИ ВОДОРОД ОЛИШ Х.С. Ахмадов	41
PARABOLIK QUYOSH KONSENTRATORI PARAMETRINI ANIQLASH Z.D. Arziyev	44
ASSESSMENT OF THE INFLUENCE OF THE PARAMETERS AND PROPERTIES OF PHASE CHANGE MATERIALS ON THE THERMAL PERFORMANCE OF BUILDINGS A. Halimov.	46
МАЖБУРИЙ КОНВЕКЦИЯ ОСТИДА ТіО2 ВА СиО АСОСЛИ НАНОСУЮКЛИКЛАРДАГИ ИССИКЛИК УЗАТИШНИ АНИКЛАШ УЧУН МЎЛЖАЛЛАНГАН АВТОМАТЛАШТИРИЛГАН СТЕНД ЯРАТИШ Т.И. Жураев.	49

ФОТОЭЛЕКТРИК БАТАРЕЯЛАРИ АСОСИДА ЮКОРИ САМАРАЛИ ФОТО-ИССИКЛИК БАТАРЕЯЛАРИ ВА КУРИЛМАЛАРИНИ ЯРАТИШ

Холов Уйғун Рауфович

Аннотация. Куёш нурланиши фотоэлектрик батареялар (ФЭБ) нинг фронтал юзасига тушиб ютилиши натижасида қизийди. Монокристалл кремнийли ФЭБ ларнинг ҳароратдан ўзгариш коэффициенти 0,46 % тенг миқдорда ўзгариб боради. Натижада самарадорлиги ва ишончлилигига салбий таъсир кўрсатади. Физика-техника институти Гелиополигонида олиб борилган тажриба синов натижалари асосида ФЭБ нинг ҳароратини пасайтириш орқали унинг иш фаолиятини яхшилаш мумкинлиги кўрсатилди. Бунинг учун ФЭБ нинг орқа сиртига сув ўтиш каналлари параллел жойлашган уяли поликарбонат асосида иссиқлик коллектори ишлаб чиқилди ва фаол сув билан совитиш усули қўлланилди. Физика-техника Институти Гелиополигонида олиб борилган 2 йиллик тажриба натижалари апрель – сетябрь ойларининг кун давомида ФЭБ қувватини ўртача 15-25 % га яхшилаш мумкинлиги аниқланди. Фотоэлектрик батарея ва унинг орқа томонига бириктирилган иссиқлик коллектори асосида яратилган Фото-иссиқлик батареяси (ФИБ) совутиш тизимларидан самарали фойдаланиш анъанавий ишлатилаётган ФЭБ лар нархидан тақрибан 8-10 % қимматроқдир. Ҳозирги иқтисодий шароитда хусусан уларни республиканинг жанубий ҳудудларида ФИБ ларидан фойдаланиш мақсадга мувофиқдир[1].

Калит сўзлар: Куёш энергияси, фотоэлектрик батарея, фото-иссицлик батарея, Куёш энергияси, энергия таъминоти, энергия самарадорлиги.

Кириш. Бугунги кунда қайта тикланадиган энергиядан фойдаланиш дунёнинг кўплаб мамлакатларида ёқилғи нархининг ошиши ва анъанавий ресурсларнинг чекланганлиги сабабли Қуёш энергиясидан фойдаланишга бўлган эҳтиёж ортмокда. Фотоэлектрик батареялар қайта тикланадиган энергия соҳасида самарали, барқарор ва экологик тоза маҳсулотлардан биридир. Фотоэлектрик батареялар тўғридан-тўғри Қуёш нурланишини электр энергиясига айлантиради. Амалда Қуёш нурланишининг атиги 15-20% электр энергиясига, қолган қисми иссиқликка айланади. Қайта тикланувчи энергия манбаларидан фойдаланиш кишлоқ аҳолисига ҳар томонлама қулай шарт-шароит яратишга қаратилган. Одатда ФЭБ нинг иш ҳарорати бир градусга кўтарилганда самарадорлик 0,46 % пасайишига олиб келиши мумкин [2]. Мамлакатимиз жанубий ҳудудларида ҳаво ҳарорати ва чангланиш даражаси бошқа ҳудудларга нисбатан юқорилиги сабабли ФИК га таъсир кўрсатади. Шунинг учун ФЭБ ларини самарадорлигини ошириш борасида изланишлар олиб борилди. Бу ишда 340 Вт ли ФЭБ дан фойдаланилди. Иссиқлик коллектори тайёрлаш учун уяли поликарбонатдан фойдаланилди. Иссиқлик коллекторининг ФЭБ параметрларига таъсири ва ишлаб чиқиш технологияси ўрганилди.

Тажриба қурилмаси ва технологияси. ФЭБ нинг ишлаш самарадорлигини ошириш мақсадида унинг орқа сиртига ўрнатиш учун иссиқлик коллекторининг такомиллашган самарали технологияси ишлаб чиқилди. Тайёрланган ФИБ нинг такомиллашган кўриниши асосида Тошкент шаҳрининг Физика-техника институти Гелиополигонида тажриба синов натижалари олиб борилди.

1-расм. Тажриба қурилмаси.

Тажриба натижалари асосида ФИБ ларнинг салт юриш кучланиши, киска туташув токи шунингдек Куёш нурланиши, атроф-муҳит температураси ва шамол тезлиги ўлчанди. ФИБ жанубга қаратилган ҳолатда горизонтга нисбатан 45⁰ бурчак остида ҳаракатсиз таянч конструкцияга ўрнатилди. Тажриба синов учун олинган ФЭБ ни орқа юзасини совутиш мақсадида уяли поликарбонатдан тайёрланган такомиллашган иссиқлик коллетори ўрнатилди. Уяли поликарбонат ўзига хос хусусиятларга эга: шаффофлиги, иссиқликка чидамлилиги, енгиллиги, мустаҳкамлиги, эгилувчанлиги билан бошқа материалларга нисбатан яхши ҳисобланади.

Натижа муҳокамаси. Тажриба синов натижалари 2021– йил 17 – сентябрда соат 08³⁰ – 16⁰⁰ га қадар 15 минут вақт оралиғида олиб борилди. Натижалар очиқ ҳавода олиб борилди. Ҳаво температураси 22-32 ⁰C, шамол тезлиги 8м/с, атмосфера босими 757 мм.сим.уст ва нисбий намлик 17-37 % ни ташкил этди. Олинган натижалар асосида графиклар 2 – расмда келтирилган. 2 а – расмда (қора чизиқ) салт юриш кучланишининг, (қизил чизиқ) қисқа туташув токининг вақтга боғлиқлиги келтирилган. 2 б – расмда эса ФИБ дан олинган иссиқ сувнинг вақтга боғлиқлиги келтирилган.

2-расм. а) салт юриш кучланиши ва қисқа туташув токининг вақтга боғлиқлиги, б) иссиқлик коллекторидан чиққан исссиқ сувнинг вақтга боғлиқлиги.

Очиқ Қуёшли кунда 340 Вт ли ФИБ ни ҳаракатсиз таянч конструкцияга ўрнатиб натижа олинди. ФИБ кун давомида 7,5 соат ишлатилди. Бу вақтда 1,64 кВт *соат захира энергияси, иссиқ сувнинг чиқиш тезлиги 0,011 м/с бўлганда ўртача 47 ⁰С ли 308 литр сув олиш имконига эга бўламиз.

Хулоса. Мақолада такомиллашган иссиқлик коллектори ишлаб чиқилди ва ФЭБ нинг орқа юзасига ўрнатилди. Ишлаб чиқилган ФИБ нинг техник параметрлари ўрганилди. Олинган натижалар ФЭБ ларнинг ФИК и ошганлигини кўрсатди. ФИБ каналларидан оқадиган совуқ сув ФЭБ нинг орқа сиртидаги иссиқликни ўзлаштиради ва иссиқлик энергияси ҳосил қилади. Тавсия этилган ФИБ орқали жанубий ҳудудларда фойдаланиш имкони мавжуд. Олиб борилган тажриба натижаларидан қишлоқ аҳолисини кундалик эҳтиёжидан келиб чиқиб ҳам электр энергияси, ҳам иссиқлик энергияси олиш мумкин.

Фойдаланилган адабиётлар

[1] Muminov R., Tursunov M., Yuldoshev I., Sabirov H., Kholov U., Akhtamov T., "Features of optimization of increasing the efficiency of an autonomous photo thermal installation for rural regions", E3S Web of Conferences **216**, 01146 (2020), p. 2-6.

[2] Pushpendu Dwivedi, K. Sudhakar, Archana Soni, E. Solomin, I. Kirpichnikova, "Advanced cooling techniques of P.V. modules: A state of art", Case Studies in Thermal Engineering 21 (2020), p. 2-17.

Куёш иссиклик курилмаларида иссиклик аккумуляторлари сифатида фазавий ўзгарувчи материаллардан фойдаланиш Д.У. Турапова

Калит сўзлар: Глаубер тузи, парафин, DataLogger, Arduino, куёш иссикхонаси, фазавий ўзгарувчи материаллар, энергетик самарадорлик

Кириш: Бугунги кунга қадар иссиқлик сақлаш учун кўплаб фаза ўзгарувчи материаллари ишлаб чиқарилган тизимлари ва ишлаб чиқаришдан сақлаш тизимлари фойдаланишга бўлган кўплаб муаммолар мавжуд[1]. Материалларга қўйиладиган бир қанча талаблар мавжуд [2-4].

- керакли иш ҳарорати оралиғида эриш эриш нуқтаси;
- бирлик ҳажмда юқори яширин эриш иссиқлиги;
- қўшимча иссиқлик йиғилишини таъминлаш учун ўзига хос иссиқлик сиғими;
- иссиқлик энергиясини сақлаш тизимининг тўлиқ циклда ишлаши билан энергиянинг сақлаш хусусиятини пасаймаслиги;
- буғ босимининг паст даражадалиги, материалнинг жойлаштиришда кам ҳажмга эга бўлиши;

Физика-техника институти олимлари томонидан, иссиклик аккумулятори сифатида ишлатиладиган Глаубер тузи ва парафиннинг бир неча типининг иссиклик-физик хусусиятларини аниклаш бўйича экспериментал тадкикотлар ўтказилди ишлатиладиган Глаубер тузи ва парафиннинг бир неча типининг иссиклик-физик хусусиятларини аниклаш бўйича экспериментал тадкикотлар ўтказилди. Иссикхоналарда харорат кишда 35°C дан 38°C гача бахор ва ёзда эса 50°C дан 60°C гача ўзгариб туради. Иссикхона кечаси совиб кетмаслиги ва ўсимликларнинг ўсиши учун комфорт хароратни таъминлаш учун иссиклик аккумулятори сифатида глубер тузи ва парафиндан фойдаланилди. Экспериментал маълумотларни хисоблаш ва кайта ишлаш учун стенд яратилди [1].

1-расм. Фазали ўтиш материалларидан иссиклик аккумуляторлари ва Глаубер тузининг фазавий ўтиш даврларини синаш жараёнида иссиклик хусусиятларини ўрганиш учун экспериментал стенднинг диаграммаси

Стенд иссиклик изоляцияланган деворлари бўлган ва жараёнларни кузатиш имконияти бўлган камерадан иборат яъни битта девор икки каватли шиша идишдан ясалган бўлиб, у ерда ҳар хил ҳажмдаги аккумулятор синовдан ўтказилди. Ҳароратни ўлчаш учун 6 та сенсори бўлган камеранинг ички ҳарорати учун автоматик бошқарув блоки, шунингдек ҳарорат сенсорларидан маълумотларни компьюетерга узатиш мосламаси. Автоматик бошқариладиган камера учун иситиш ва совутиш тизимлари графикда келтирилган. Бу графикдан кўриниб турибдики, 20 дақиқада иситиш вақтида ҳаво ҳарорати максимал иссиклик манбаи ёрдамида 40⁰ С га етказилди. Сув ва Глаубер тузидан намуналар бир хил ҳажмда, ҳар бири 70 мл дан ва бир хил термотехник хусусиятларга эга шиша идишларда олинган. Тажриба бошланганидан 150 дақиқа ўтгач, идишдаги Глаубер тузи бутунлай эриб

кетди ва бу ерда унинг ҳарорати 50°С, сув намунасидаги ҳарорат эса 53°С эди. Шу пайтдан бошлаб, камерадаги совутиш режими камеранинг ён деворларига ўрнатилган экстрактор ёрдамида ишга тушди. Камерадаги ҳавони совутиш жараёни 2 расмда кўрсатилган.

2-расм. Иситиш ва совутиш пайтида камерадаги хаво харорати ва фазали ўтиш материаллари намуналари ўлчаш натижалари

Совутиш жараёни бошланганидан 60 минут ўтгач, сув ва Глаубер тузининг харорати 26,35°С ва 35⁰С бўлди. Сув харорати Глаубер тузининг хароратидан юкори бўлишига карамай, худди шу совутиш вактида улардаги харорат бир хил булиб колди. Бу шуни курсатадики, совутиш жараёнида Глаубер тузидаги харорат пасайиши кристаллар хосил бўлиши туфайли секинлашган. Глаубер тузининг ҳарорати фазали ўтиш ҳароратига кирганда, камерадан иссикликни узлуксиз олиб ташлашига карамай, унинг харорати 43 минут давомида ўзгармади. Шу билан бирга, камерадаги сув ва хаво харорати мос равишда 28 ва 25°С га етди. Бу графикдан кўриниб турибдики, 20 дакикада иситиш вактида хаво харорати максимал иссиклик манбаи ёрдамида 40° С га етказилди. Органик материаллардан фойдаланиш иссиклик энергиясини саклашнинг самарали усулларидан биридир. Хулоса ўрнида шуни айтиш мумкинки, Глаубер тузи 28-32°С оралиғида фазавий ўзгарувчан материал сифатида ишлатилиши мумкин. Иссиклик хусусиятлари ва кристалланиш турларини хар томонлама ўрганишда Глаубер тузи иссикликни аккумуляция килиш сохасида ишлатилиш учун истикболли хисобланади [4-5]. Органик материаллардан фойдаланиш иссиклик энергиясини саклашнинг самарали усулларидан биридир, лекин органик материаллардан фойдаланишда харорат режимини хам катиий хисобга олиш мухим ахамиятга эга.

Адабиётлар

[1]. Ж.С.Ахатов, А.С.Ҳалимов, Х.Х.Саидов. Результаты расчентно-экспериментальных исследований по определению тепловых параметров фазапереходного теплового аккумулятора. Фундаментальные и прикладные вопросы физики. Сборник тезисов докладов международной конференции. 2015 г.

[2]. Ahmet Kurklu. Energy storage applications in greenhouses by means of phase change materials (PCMs): a review. Renewable Energy.1998.

[3]. Lane, G.A., Solar Heat Storage: Latent Heat Materials, Volume IBackground and Scientific Principles. CRC Press, Florida, 1983.

[4]. Туропова Д.У. Исследование и сравнение сахара и соли Na₂SO₄+10H₂O глаубер в качестве аккумулятора тепла. "Тенденции развития современной физики полупроводников: проблемы, достижения и перспективы". Международная онлайн конференция. 2020г.

[5]. Stabilization of Glauber's salt for latent heat storage. FEF2003YL46.

ДИФРАКТОГРАММА И ФОТОЛЮМИНЕСЦЕНЦИЯ ЭПТАКСИАЛЬНОЙ ПЛЕНКИ (Si2)1-x(GaN)x

Т.Т. Ишниязов

В последнее время проявляется интерес к получению нитрида галлия на кремнии, чтобы использовать существующие кремниевые технологии для получения структуры на основе нитрида галлия, играющую важную роль в создании приборов оптоэлектроники [1]. В данной работе приведены результаты рентгеноструктурного исследования и фотолюминесценции эпитаксиальных слоев (Si₂)_{1-x}(GaN)_x. Эпитаксиальные слои получены методом жидкофазной эпитаксии из ограниченного объема оловянного раствора-расплава [2].

На рис. 1 представлена рентгенограмма эпитаксиальной пленки $(Si_2)_{1-x}(GaN)_x$. выращенной на подложки из кремния. Сравнительно узкая ширина (FWHM = 3.78×10^{-3} rad) и большая интенсивность ($2 \cdot 10^5$ имп·сек⁻¹) основного рефлекса (111)_{Si}, свидетельствует о высокой степени совершенства кристаллической решетки пленки (Si_2)_{1-x}(GaN)_x, то есть выращенная пленка является монокристаллической с ориентацией (111). Однако наблюдается кратное уменьшение интенсивности его второго (222) и третьего (333) порядков.

Размеры субкристаллитов (блоков) пленки, оцененный по ширине данного пика по формуле Селякова–Шеррера [3]:

$$L = \frac{0.94^2\lambda}{\omega cos2\theta}$$

где λ – длина волны излучения, ω – полуширина рефлекса и θ – брэгговский угол, составляли ~ 40 нм.

В процессе выращивания слоя в нем формировались субкристаллиты, имеющие линейный размер ~ 40 нм. Также обнаружено, что в дифрактограмме присутствуют узкие селективные рефлексы со слабыми интенсивностями от двух разных модификаций GaN - кубическая с ориентацией (111) и гексагональная и с ориентацией (002). Линейный размер кристаллитов этих модификации составляет ~ 47 нм.

Анализ дифрактограммы эпитаксиального слоя твердого раствора $(Si_2)_{1-x}(GaN)_x$ показывает, что в кристаллической решетке пленки наблюдаются микронапряжения [4]. Эти микронапряжений в пленке, видимо, вызваны различием ионных радиусов кремния ($r_{Si}^{4+} = 0.040$ nm), галлия ($r_{Ga}^{3+} = 0.062$ nm) и азота ($r_N^{3-} = 0,146$ nm), которые расположены в узлах замещения. Сравнительно большие радиусы ионов галлия и азота вызывают искажение кремниевой решетки пленки, следствием которого является некоторое увеличение значения параметра решетки пленки $a_{(Si2)1-x(GaN)x} = 0,54372$ нм по сравнению с параметром решетки подложки $a_{Si} = 0,54293$ нм.

А также был исследован спектр фотолюминесценции (ФЛ) $(Si_2)_{1-x}(GaN)_x$, который показан на рис. 2. Возбуждение ФЛ производилось лазерным излучением со стороны эпитаксиального слоя при температуре жидкого азота (77 К). При этом максимум интенсивности люминесцентного излучения наблюдался при длине волны $\lambda_{max} = 438$ нм, что соответствует энергии фотонов $E_{ph} = 2.83$ эВ. На широком фоне спектре ФЛ выделялся небольшой пик излучения при энергиях фотонов $E_{ph} = 1.66$ эВ. Этот пик, по-видимому, свидетельствует о возникновении размытой полосы энергетических уровней атомов молекул кремния ($E_{i,Si}$), расположенные в запрещенной зоне на $E_{i,Si} = 1.66$ эВ ниже дна зоны проводимости твердого раствора (Si_2)_{1-x}(GaN)_x.

1,0

0,8

0,6

0,4

эпитаксиального слоя твердого раствора (Si₂)_{1-x}(GaN)_x при температуре 77 К

Содержание приповерхностной кремния области небольшое, В пленки следовательно, размытая полоса энергетических уровней при E_{ph} = 1.66 эВ обусловлена связями Si-Si, находящихся в окружении обогащенного GaN подслоя ковалентной связи тетраэдрической решетки матрицы твердого раствора (Si₂)_{1-x}(GaN)_x.

Таким образом, полученная пленка (Si₂)_{1-х}(GaN)_х является монокристаллическим с ориентацией (111) и в ней присутствуют нанокристаллиты нитрида галлия, как кубической (c-GaN), так и гексагональной (h-GaN) модификаций. Эпитаксиальный слой твердого интерес для разработки оптоэлектронных приборов, работающих в видимой области спектра излучения.

Литература

[1]. Isami Akasala and Hiroshi Amono. Crystal Growth and Conductivity Control of Group III Nitride Semiconductors and Their Application to Short Wavelength Light Emitters // Jpn. J. Appl. Phys., 1997. - P. 5393 - 5408.

[2]. А.С. Саидов, А.Ю. Лейдерман, Ш.Н. Усмонов, К.А. Амонов. Эффект инжекционного обеднения в p-Si−n-(Si₂)_{1-x}(ZnSe)_x (0≤x≤0.01) гетероструктуре. ФТП. 2018. том. 52. вып. 9. С. 1066-1070.

[3]. А.А. Русаков Рентгенография металлов. М.: Атомиздат, 1977. – 480 с.

[4]. И. Л. Шульпина, Р. Н. Кютт, В. В. Ратников, И. А. Прохоров, И. Ж. Безбах, М. П. Щеглов. Методы рентгеновской дифракционной диагностики сильнолегированных монокристаллов полупроводников // ЖТФ, 2010. Т. 80, № 4. - С. 105–114.

ЎЗБЕКИСТОН ҲУДУДЛАРИДА ҚАЙТА ТИКЛАНУВЧИ ЭНЕРГИЯ МАНБАЛАРИ ЭНЕРГО-ИҚТИСОДИЙ САЛОХИЯТНИ БАШОРАТЛАШДА ҲАЛҚАРО МЕТРЕОЛОГИК КУЗАТУВЛАР

Рахимов Эргашали Юлдашевич

"Куёш иссиклик ва энергетик курилмалари лабораторияси" катта илмий ходими

Мамлакатимиз ҳудудларида қайта тикланувчи энергия манбалари (ҚТЭМ) энергиясининг табиий, ялпи, техник ва энерго-иқтисодий салоҳиятларини ишончли баҳолаш, уларнинг геоаҳборот маълумотларини тўплаш, геоинформацион технологиялар ва нейрон тармоқлар асосида қайта таҳлил қилиш, улар асосида ҚТЭМ ҳамда технологияларнинг техник ва технологик жиҳатдан энг мақбулларини танлаш, ишлаб чиқариладиган энергия миқдорининг ташқи муҳит омиллари (ҳаво ҳарорати ва намлиги, булутлар ҳаракати динамикаси, шамол, чангланиш, ёғингарчилик миқдори ва бошқалар)га боғлиқлигини баҳолаш ҳамда ушбу миқдор юзасидан қисқа ва узоқ муддатли илмий башоратлаш каби долзарб ва зарурий масалалар мамлакатимизда ривожланиб келаётган қайта тикланадиган энергетика соҳасини ривожлантириш, шунингдек, ҳусусий ва саноат миқёсидаги электр энергиясини ишлаб чиқарувчилар ва истеъмолчилар фойдаланишлари учун долзарб ва зарур вазифалар ҳисобланади.

Куёш ва шамол манбалари асосидаги энергия тизимларининг самарадорлиги/ишлаб чиқариш қувватлари қийматларининг ҳудудга хос иқлимий омиллар кўрсаткичларига (атроф-муҳит ҳарорати, намлик, шамол тезлиги, ёғингарчилик, чангланиш даражаси, булутлар ҳаракатининг ўзгариш динамикаси ва бошқалар) боғлиқликларини ўрнаиш ҳамда улардан олинажак энергияни нейрон тармоқлар асосида қисқа ва узоқ муддатли илмий башорат қилиш шу танланган ҳудудлардаги узоқ муддатли ҳамда кузатиш даврийлиги қисқа бўлган актинометрик ва иқлимий маълумотлар мавжудлигига боғлиқ. Одатда, ер усти кузатувларидан фойдаланиш бериладиган илмий башоратнинг аниқлигини оширади, аммо ҳар доим ҳам берилган ҳудудда ер усти кузатувлари олиб боилмайди. Бундай ҳолатларда ишлаш белгиланган мақсадга тўғри йўналтиради.

Бугунги кунда Ўзбекистон ҳудудида 90 га яқин метеорологик станциялар мавжуд бўлиб, уларда фақатгина гидрометрологик мақсадлар нуқтаи назаридан мамлакатнинг барча ҳудудлари учун иқлим маълумотларини (ташқи ҳавонинг минимал ва максимал ҳарорати, ҳавонинг намлиги, атмосфера босими, шамол тезлиги, чангланиш, ёғингарчилик ва ҳ.к.) аниқлаш бўйича кузатувлар олиб борилади [1]. Таъкидлаш жоизки, республика ҳудудидаги кўплаб метеостанциялар метеорологик ахборот алмашувининг халқаро метеостанциялари рўйхатига киритилган [2-3].

Илмий изланишларда NASA POWER, SARAH1E, ERA5 каби халқаро маълумотлар базаси ҳамда сунъий йўлдош кузатувлари, шунингдек, Ўзбекистон ҳудудида (33 та) ва унинг чегаралари яқинида аммо қўшни республикалар ҳудудида (9 та) жойлашган жами 42 та ер усти кузатув метеостанциялари танлаб олинган.

Ер усти кузатувлари маълумотлар даврилиги турлича бўлиб, 1960-2020 йиллардаги кунлик, 2005-2020 йиллар учун 3 соатлик (бир кунда 8 та ўлчов)хамда 2012-2020 йиллар оралиги учун эса хар 30 минутлик қадам билан ўлчанган маълумотларни ўзида мужассамлаштирган. Олиб борилган тахлиллардан маълум бўлишича, 2005-2020 йилларда ташқи хаво харорати ўртача 1,8 °C га ошганлиги аниқланди. Ташқи хаво харорати +35 °C дан юкори ва -10 °C дан паст бўлган кунларнинг хақиқий сони, шунингдек, мавжуд қурилиш нормаларида келтирилган хароратнинг ўртача, хамда иситиш ва совутиш кўрсаткичлари даражаси фарқи аниқланган. Ушбу олиб борилган ҳисоб-китоблар асосида иссиқлик ва совуқ таъминоти тизимини лойихалашда қурилиш меъёрлари ва қоидаларига ўзгартириш киритиш зарурлиги аниқланди.

Энергия тежамкор турар-жой биноларини лойиҳалаш, режалаштириш ҳамда башоратлаш учун зарур бўлган иситиш ва совутиш даража-кунлари (HDD ва CDD)ни

халқаро маълумотлар ва сунъий йўлдош кузатувлари асосида аниқлашда уларни ер усти кузатувлари орқали аниқланган қийматларига нисбатан хатоликлари 1-жадвалда келтирилган.

Жадвал 1.: HDD ва CDD қийматларини NASA POWER ва ERA5 маълумотлари асосида аниқланган қийматларини ер усти кузатувлари билан ҳисоблашдаги ҳатоликлари

Errors	MAD	MSE	RMSE	MAPE	MAD	MSE	RMSE	MAPE
		NASA P	OWER		ERA5			
T _{base}		HDD						
12	183,97	65227,18	255,4	13,87	102.61	19114.61	138.26	8.41
14	194,33	72277,18	268,84	11,75	112.36	23290.24	152.61	7.33
16	204,24	79443,88	281,86	10,16	123.45	28790.12	169.68	6.57
18	215,27	87774,3	296,27	8,98	135.36	35401.55	188.15	5.97
20	224,61	96864,67	311,23	7,96	148.48	43305.7	208.1	5.51
22	233,88	107476,3	327,84	7,11	164.94	52869.73	229.93	5.22
T _{base}				CI	DD			
18	210,39	62121,55	249,24	17,65	155.33	38047.52	195.06	13.02
20	195,55	51971,24	227,97	22,22	140.48	30771.76	175.42	15.97
22	177,55	41729,55	204,28	29,18	123.97	23798.88	154.27	20.42
24	154,7	31116,21	176,4	40,88	105.09	17313.09	131.58	27.71
26	124,33	20061,91	141,64	63,63	82.48	11230.36	105.97	41.69
28	86,27	9682,39	98,4	127,29	56.18	5598.91	74.83	76.91

Жадвал 1.дан кўриниб турибдики, одатда хатолик қиймати 10% гача қабул қилинганлиги сабабли, 18 °С базавий ҳарорат учун мамлакатнинг бутун ҳудудида HDDни ҳисоблашда NASA POWER (8.98) га нисбатан энг мос маълумотлар ERA5 (5,97) ҳисобланади.

Учала маълумотлар базаси маълумотлари билан верификациялаш натижаларидан кўринадики, ўртача ойлик суткалик йиғинди қуёш нурланиши миқдорини верификациялаш таҳлил қилинганда, ер усти қийматларига энг яқин бўлган энг яхши натижаларни NASA POWER маълумотлар базаси кўрсатди (жадвал 2.).

Жадвал 2.: Ўртача ойлик с	уткалик йиғинди қу	ёш нурланиши қийматлари
бўйич NASA POWER, ERA5 ва SA	ARAH1E маълумотла	р базалари бўйича таққослаш

натижалари							
Халқаро	Тизим хатолиги	Ўртача квадратик	Pearson's r (Пирсоннинг				
маълумотлар	RMS (кВт·coaт/м ²)	четлашиш (RMSD)	корреляция				
базаси		(кВт·соат/м ²)	коэффициенти)				
NASA POWER	0.14	0,25	0.9951				
ERA5	0,2	0,26	0,9962				
SARAH1E	0,13	0,27	0,9901				

Олинган натижалардан кўринадики, нейрон тармоқлар, математик усуллар ҳамда турли дастурлар ёрдамида Ўзбекистон ҳудудида ҚТЭМ асосидаги энергия курилмалари ва энергия тежамкор иншоатларни лойиҳалаш, режалаштириш, қуриш ҳамда улардан олинадиган энергияни ва самарани қисқа муддатли башоратлашда NASA POWER ва ERA5 маълумотларини қайта ишлаган ҳолда фойдаланиш мумкин.

Адабиётлар рўйхати

[1] Ўзбекистон Республикаси Гидрометеорология хизмати марказининг расмий

сахифаси. Электрон манба: <u>https://www.meteo.uz/#/uz/open-data/meteostations</u>

- [2] Электрон манба: <u>https://rp5.ru</u>
- [3] Электрон манба: <u>http://pogoda-service.ru</u>

БАЗА СОХАСИ ТЎЛИҚ КАМБАҒАЛЛАШГАН КРЕМНИЙЛИ СТРУКТУРАЛАР-НИНГ ХАРОРАТГА СЕЗГИРЛИГИ ХУСУСИЯТЛАРИ

Бебитов Р.Р.

Харорат датчиклар яъни, ўлчанаётган ҳарорат қийматини электр сигналига айлантириш учун мўлжалланган датчиклар, бугунги кунда турли соҳаларда кенг қўлланилмоқда ва уларга бўлган талаб тобора ўсиб бормоқда.

Хозирги кунда контакт типидаги харорат датчикларининг турлари кўп бўлиб, биметалли элементлар, термисторлар, p-n-ўтишли яримўтказгичли харорат датчиклар, термопаралар, суюкликли харорат датчиклари ва бошкалар шулар жумласидандир[1, Б. 2959-2978].

p-n-ўтишли яримўтказгичли харорат датчикларида жумладан, яримўтказгичли диодлар ва транзисторларда, ҳароратни ўлчаш учун стабиллашган доимий ток оқиб ўтаётган тўғри йўналишда силжитилган p-n-ўтишга тушаётган кучланишнинг ҳароратга боғлиқлигини қайд қилиш орқали хароратни ўлчаш амалга оширилади. Улар вольт-ҳарорат таснифининг нисбатан юқори чизиқлилиги, ўлчаш жараёнининг тезлиги, кичик ўлчамлилиги ва арзонлиги билан ажралиб туради.

Ушбу харорат датчикларининг камчиликлари эса нисбатан юқори истеъмол қилинадиган ишчи токида ишлаши ва юқори аниқликни таъминлаш учун кичик дрейфли барқарорлаштирилган ток манбаи талаб қилинишидир. Харорат датчик истеъмол қиладиган қувватни ҳароратни ўлчаш учун тескари йўналишда уланган p-n-ўтишли яримўтказгичли диодларни қўллаш орқали камайтириш мумкин.

Шунинг учун илк бора база соҳаси камбағаллашган кремнийли структурани ҳарорат датчиги сифатида қўллаш таклиф этилган бўлиб, бунда ҳарорат датчик томонидан истеъмол қилинадиган қувватни камайтириш ва ўлчов аниқлигининг юқори бўлишини таъминлашга имкон берадиган барқарорлаштирилган қувват манбаига бўлган талабни йўқотиш, шунингдек, тескари йўналишда уланган яримўтказгич асосидаги p-n-ўтишли ҳарорат датчигининг волт-ҳарорат характеристикасида чизиқли боғлиқликни олишга эришилган.

1-расм. Ўлчов потенциалининг (U₀) турли хил 2-р хароратларда қувват манбаи (U_{пит}) нинг рат кучланишига боғлиқ-лиги графиги

2-расм. Ўлчов потенциалининг (U₀) хароратга боғлиқлик графиги

Шундай қилиб, тавсия этилган ҳарорат датчигининг конструкцияларида техник натижаси, яримўтказгич ўтишининг тескари ўтишида ишлаши орқали харорат датчикда қувват сарфини бир неча бор камайтиришга, қувват манбаи параметрларидан ўлчов аниқлигининг мустақиллиги сабабли барқарорлаштирилган ток манбасини қўллаш заруратини бартараф этишга, шунингдек, ушбу ҳарорат датчигида кенг ҳарорат оралиғида ҳароратнинг кучланишга тўғри пропорционаллилигига ва чизиқлилига эришилганлигини 1 – ва 2 – расмларда келтирилган тажриба натижалари орқали яққол кўриш мумкин.

Курилма 3-расмда кўрсатилган ва у куйидагича ишлайди. Юкори сатхдаги контакт ва кучли легирланган соҳа контактига уланадиган тескари кучланиш ишчи кучланиш ҳисобланади. Маълум бир тескари ишчи кучланишида, намунанинг база соҳаси тўлик камбағаллашган ҳолатга ўтади ва ортиб бораётган ишчи кучланишидан ўлчаш потенциали доимий қийматга эга бўлади ва бу фақат ҳарорат ўзгарганда унга мутаносиб равишда ўзга-ради. Бундай ҳолда, ўлчов потенциалининг ўзгариши ва ҳарорат ўзгаришига нисбати яъни ҳарорат сезгирлиги коэффициентининг қиймати мусбат (нолдан катта) бўлади.

3-расм. Тадқиқ этилган уч электродли кремний структурасининг тузи-лиши

4-расм.Текшириладиган структураларда турли тескари ишчи кучланишларда ўтишларнинг камбағаллашган соҳа кенглигининг ўзгариш динамикасини кўрсатувчи сифатий конструктив сҳемалар

Кузатилган характеристикаларни структуранинг n-p⁺- ва p-n-ўтишларидаги камбағаллашган соҳалар кенглигининг ўзгаришлар динамикасига мос равишда турли хил тескари ишчи кучланишлар учун чизилган ўрганилаётган структуранинг сифатий структуравий схемалари ёрдамида 4-расмда кўрсатилгандай тушунтириш мумкин:

*U*_{num} = 0:бошланғич ҳолатида, яъни структурага тескари ишчи кучланиш берилмаган холда (4а-расм), структурада маълум кенгликдаги квазинейтрал база соҳаси мавжуд;

0 <*U*_{num}<*U*₀: структурага берилган тескари ишчи кучланишининг ошиши билан (4bрасм) квазинейтрал база соҳасининг кенглиги аста-секин камаяди. Натижада ушбу қисмда ўлчов потентсиали (U₁₃) тескари ишчи ички кучланишига (U₁₂) тенг, яьни 1-расмдаги чизиқли ўсиш қисмига мос ҳолат кузатилади;

 $U_{num} = U_o$: кучланиш U_o га етганда, n-p⁺- ва p-n-ўтишлар ўзаро туташади ва структуранинг квазийнейтрал базаси тўлик камбағаллашади, натижада 2 ва 3 контактлари ўзаро узилади.

 $U_{num} > U_o$: тескари кучланиш база сохаси тўлиқ камбағаллашадиган кучланишдан (U_o) катта бўлганда n-p⁺- ва p-n-ўтишларнинг камбағаллашган соҳаси фақат 2 контакт томонга кенгаяди, 2 ва 3 контактлар ўзаро узилганлиги сабабли эса 1 ва 3 контакларда ўлчанадиган потенциал тобора ортиб бораётган ишчи кучланишга боғлиқ бўлмай, доимий бўлиб қолади, бу 1-расмдаги тўйинганлик қисмига тўғри келади.

База сохаси тўлиқ камбағаллашадиган кучланишнинг (U₀) ҳароратга боғлиқлиги - 180°С дан 180°С гача бўлган кенг ҳарорат интервалида текширилган. Бунда, тўғри йўналишдаги кучланишнинг ҳароратга боғлиқлигидан фарқли равишда U_o ҳарорат ортиши билан ортиши ҳамда юқори чизиқлилиги билан ҳарактерланади. U_o кучланишнинг ҳароратга сезгирлиги бутун ҳарорат интервалида +2.18 мВ/°С га тенглиги аниқланган.

Адабиётлар рўйхати

1. Childs P.R.N., Greenwood J.R., Long C.A. Review of temperature measurement // Review of Scientific Instruments, 2000. – Vol. 71, No. 8. – PP. 2959-2978

ХИМИЧЕСКИЙ ПОТЕНЦИАЛ ДВУМЕРНОГО ЭЛЕКТРОННОГО ГАЗА В МАГНИТНОМ ПОЛЕ

Б.Т. Абдулазизов¹, П.Ж. Байматов², М.С.Тохиржонов²

¹Физико-технический институт АН РУз, ул. Ч. Айтматова 26, 100084, Ташкент, Узбекистан

¹Наманганский государственный университет, ул. Уйчинская 316, 716019, Наманган, Узбекистан

Исследуется температурное изменение химического потенциала двумерного электронного газа при фиксированном значении магнитного поля. Такая зависимость приведено в работе [1] для электронного газа в квантовой яме *GaAs*. Из этой зависимости следует, что если уровень Ландау заполнена точно наполовину – химический потенциал не менялось с температурой.

Здесь приведена анализы $\mu(T)$ в предельных случаях - когда уширения уровни Ландау отсутствует $\Gamma = 0$, и с учетом их уширения $\Gamma > 0$. Найдена аналитическая формула, описывающая зависимости $\mu(T, v)$ при $\Gamma = 0$ и низких температурах. Приведена также низкотемпературная формула зависимости $\mu(k_BT/\Gamma, \varepsilon_F)$ на основе разложения Зоммерфельда. Обсуждаются влияние теплового возбуждения происходящего как внутри - так и между уровнями Ландау на изменения химического потенциала с температурой.

Для заданной температуры T, концентрации n_s , параметра уширении уровня Γ и магнитного поля B - химический потенциал 2D электронного газа $\mu(T,B,\Gamma)$ можно найти из уравнений [2,3,4]

$$n_{s} = D\hbar\omega \sum_{n} \int_{0}^{\infty} \frac{1}{\sqrt{2\pi\Gamma}} \exp\left[-\frac{(\varepsilon - \varepsilon_{n})^{2}}{2\Gamma^{2}}\right] f(\varepsilon, \mu, T) d\varepsilon$$
(1)

Здесь, $f(\varepsilon, \mu, T)$ - функция распределения Ферми-Дирака, ε_n - энергетические уровни Ландау (спиновая расщепления уровня не будем учитывать) и $\hbar \omega$ - циклотронная энергия

$$\varepsilon_n = \left(n + \frac{1}{2}\right) \hbar \omega , \quad \hbar \omega = \hbar \frac{eB}{m^*} = \frac{1.16 \times 10^{-4}}{m^* / m_0} B \left[\frac{eV}{T}\right], \tag{2}$$

$$D\hbar\omega = \frac{eB}{\pi\hbar}, \qquad D = \frac{m^*}{\pi\hbar^2} = \frac{m^*}{m_0} \frac{413 \cdot 10^{12}}{\text{eV} \cdot \text{cm}^2}$$
 (3)

Фактор заполнения ν определяется как $\nu = n_s / D\hbar\omega$.

График зависимости $\mu(T)$ показана на рисунке для трех разных значений чисел заполнения v = 2.25, 2.5, 2.75. Из графика видно, что при достаточно низких температурах $T \ll \Gamma$, и когда энергия Ферми лежит внутри уровня Ландау, электронный газ действительно ведет себя как металлически. При малых значений параметра уширения $\Gamma \to 0$ зависимость $\mu(T)$ стремится к штриховую линию. При больших температурах $T \gg \Gamma$ влияние уширения уровня незаметно. С дальнейшим ростом температуры, химический потенциал медленно уменьшается. Это связано с тепловым переходом электронов между уровнями Ландау, и оно экспоненциально мало ~ exp($-\hbar\omega/T$).

Рис.1. Зависимость химического потенциала 2D электронного газа от температуры для трех разных значений чисел заполнения $\nu = 2.25, 2.5, 2.75$.

Литература

[1] Cristine Villagonzalo, Rayda Gammag, The Intrinsic Features of the Specific Heat at Half-Filled Landau Levels of Two-Dimensional Electron Systems, J.Low Temp Phys (2011) **163**: pp.43–52, doi 10.1007/s10909-010-0259-3

[2] Ramos A.C.A., Farias G.A., Almeida N.S. Thermodinamics of a Quasi-two Dimensional Electron Gas: Effects of Magnetic Fields, Temperature and Finite Width. Physic E: Low-Dimensional Systems and Nanostructures. **43**, 2011. 1878-1881 p.

[3] W. Zawadzki, R. Lassnig, Magnetization, Specific heat, Magneto-thermal Effect and Thermoelectric Power of Two-dimensional electron gas in a Quantizing Magnetic Field, Surface Science **142**, 225-235 (1984)

[4] I. Fezai, S. Jaziri, Thermodynamic properties of Landau levels in InSb two-dimensional electron gas, Superlattices and Microstructures **59**, (2013), pp. 60–65

РАЗРАБОТКА ВЫСОКОЭФФЕКТИВНЫХ ПОЛУПРОВОДНИКОВЫХ ДЕТЕКТОРОВ ДЛЯ РАДОНОМЕТРОВ И ИССЛЕДОВАНИЕ ОБЪЕМНОЙ АКТИВНОСТИ ПРОДУКТОВ РАСПАДА РАДОНА.

Б.С. Раджапов

ФТИ НПО «Физика-Солнце» АН РУз, Ташкент, 100084, ул. Чингиз Айтматова "Б", Узбекистан.

Аннотация

В работе приводится описание разработанного радонометра для экспрессного измерения продуктов распада радона на базе кремниевого детектора большого диаметра. Разработка детекторов с большой чувствительной областью и рабочим объемом из кремния диаметром больше 50 мм и толщиной 0.3-0,5мм, в мировой практике используется очень мало. Приводятся результаты разработки технологии изготовления, а также данные исследования электрофизических и радиометрических характеристик полупроводниковых поверхностно-барьерных и гетерепереходных Al-αGe-pSi-Au детекторов больших размеров (диаметром 30-100 мм), структурная схема радиометра. Кроме этого приведены данные мониторинга радонометром RR-4M концентрации радона в подпочвенном слое и на воздухе от температуры, влажности и времени суток.

Ключевые слова: кремний, полупроводниковые детекторы, радонометр, продукты распада радона, микроконтроллер

РАЗРАБОТКА ДЕТЕКТОРОВ

Разработка и оптимизация технологии изготовления, численные расчеты и компьютерное математическое моделирование, кремниевых детекторов больших размеров приведены в работах[1,2]. Поверхностно-барьерные детекторы изготавливались из кремния n-типа, гетерепереходные Al- α Ge-pSi-Au детекторы из кремния p-типа. Удельное сопротивление исходных пластин варьировалось в диапазоне (3-8) кОм·см, время жизни неосновных носителей составляло $\tau = 300 \div 1000$ мкс. Методом вакуумного напыления при давлении 3×10^{-5} мм.рт.ст. на пластины p-типа наносили аморфный α Ge (300A°) и контакты Al (300A°) и Au (~200A°). Аморфный германий с алюминием на высокоомном кремнии создает хорошо проводящий омический контакт. Для поверхностно-барьерных детекторов контакты Al (300A°) и Au (~200A°). Изготовленные детекторы имели следующие характеристики: Диаметр - 40-100 мм, толщина чувствительной области W=0.3-0,5мм при рабочем напряжении U_{pa6}= (10÷80) B, «темновой» ток I_{oбp}= (0,5÷2) мкА, емкость C= (1000÷1750) пФ, энергетический эквивалент шума E_m= (40÷52) кэB, энергетическое разрешение составляло R_α=86 кэB при температуре T = +27 °C. [2].

На основе поверхностно-барьерных и гетеропереходных Al-αGe-pSi-Au детекторов больших размеров разработан прибор радонометр. Разработанный в лаборатории ФТИ AH РУз радонометр обеспечивает измерение содержания радона в воздухе, почве, воде и материале, а также позволяет проводить мониторинг в течение продолжительного времени в онлайн режиме. (В данный момент прибор сертифицирован). Принцип работы прибора основан на закачке исследуемого воздуха в измерительную камеру с последующим измерением его радиоактивности в течение регламентного времени.

Структурная схема радонометра приведена на рис.1. В его состав входят следующие функциональные элементы: рабочая камера с детектором-2, узел усиления и селекции информации (аналоговый узел)-3, микроконтроллерный узел (цифровой узел)-4, узел вторичного электропитания-6, узел воздухозаборника-1, персональный компьютер с установленным программным обеспечением-5, GSM/SMS-модуль, для проведения измерений в онлайн режиме-7. На Рис.2,3 представлены изготовленные радиометры: радонометр, для измерений в воздухе, почве и воде и радонометр для измерений в онлайн

Рис.2. Радонометр RR-4М для измерений в воздухе, почве и воде

Рис.3. Радонометр RR-8М для измерений в онлайн режиме.

режиме. Разработанные приборы работают как в комплекте с ПК с операционной системой Windows 7, 8, так и автономно.

Разработанная рабочая камера [3] представляет собой пустотелый цилиндр, внутри которого в геометрическом центре, на подвесках укреплён детектор кремниевый детектор с диаметром чувствительной области 60 мм, который чувствителен к регистрации продуктов распада с двух сторон.

Микроконтроллерный узел обеспечивает полную автономную работу устройства регистрации.

Для обработки, накопленной в устройстве информации, оно подключается к персональному компьютеру, на котором установлено разработанное в соответствии с техническим заданием прикладное программное обеспечение – программа ADL-V1.9-3.3. [4].

Рис.4. Излучение радона из почвы. Период 21.10.2020г.-29.05.2021г.

Измерения, представленные на Рис.4 проводились в режиме реального времени. Через GSM/SMS - модуль информация передавалась на телефон исследователя, а также на монитор персонального компьютера, где отображались данные измерений.

Литература

1.С.А.Раджапов, Р.Х.Рахимов, Б.С.Раджапов, М.А.Зуфаров, Ш.Ф.Шарифов. Разработка радиометра на основе кремниевых детекторов с большой чувствительной площадью. //Computational Nanotechnology. -Москва, 2019. -№1, -С. 65-68.

2. R.A. Muminov, A.K. Saymbetov,, N.M. Japashov,, Yo.K. Toshmurodov, S.A. Radzhapov, N.B. Kuttybay, M.K. Nurgaliyev. Physical Features of Double Sided Diffusion of Lithium into Silicon for Large Size Detectors. //Journal of nano- and electronic physics vol. 11no 2, 2031 (4pp) (2019) 3. Патент РУз №ІАР 04882. / Р.А. Муминов, С.А. Раджапов, С.Л. Лутпуллаев, Ю.С. Пиндюрин, С.С. Хусамидинов, С.В. Юткин. / Устройства для измерения объемной активности радона в воздухе.

4. Свидетельство на программные продукты РУз № DGU 20180983 от 06.12.2018. Программа для микроконтроллера радиометра радона и радия / Б.С. Раджапов, К. Эргашев.

ВЛИЯНИЕ АТОМОВ МОЛЕКУЛ ZnSe И Ge НА ФОТОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА КРЕМНИЯ

Амонов К.А.

В настоящее время в мире, в области полупроводникового материаловедения, уделяется большое внимание исследованиям в направлении получения новых полупроводниковых материалов с уникальными свойствами, пригодных для создания приборов микро-, фото- и оптоэлектроники [1]. В данной работе приведены предварительные экспериментальные результаты фотоэлектрического исследования пленок твердого раствора (Si₂)_{1-x-v}(Ge₂)_x(ZnSe)_v, выращенного методом жидкофазной эпитаксии из ограниченного объема оловянного раствора-расплава в атмосфере очищенного палладием водорода на подложках из монокристаллического кремния КДБ-0,01 с ориентацией <111> и толщиной ~ 350 мкм [2]. Энерго - дисперсионный рентгеновский анализ пленки показывает, что молярное содержание ZnSe и Ge в пленках 4 и 5.7 % соответственно. Структурные исследования эпитаксиальной пленки были выполнены на рентгеновском дифрактометре ДРОН-3М (рис. 1.). При этом обнаружено, что кристаллографическая ориентация эпитаксиального слоя $(Si_2)_{1-x-y}(Ge_2)_x(ZnSe)_y$ соответствует направлению (111) и имеет совершенную монокристаллическую свойству.

В процессе выращивания эпитаксиального слоя в нем формировались субкристаллы имеющие размер 47 нм. Анализ показал, что новые селективные рефлексы (111)_{ZnSe} и (220)_{ZnSe} обусловлены нанокристаллами ZnSe с размерами 64 и 32 nm по направлениям (111) и (220), соответственно. При этом экспериментально определенное значение параметра решетки селенида цинка составляло $a_{ZnSe} = 5.6815$ Å. Другие новые узкие структурные линии (111)_{Ge} и (200)_{Ge} появляются от нанокристаллов Ge с характерными размерами 44 и 32 nm по направлениям (111) и (200), соответственно. Значение параметра решетки нанокристаллов Ge, определенное из рентгенограммы, составляло $a_{Ge} = 5.6489$ Å.

Также определялись спектральные чувствительности pSi-n(Si₂)_{1-x}(Ge₂)_x(ZnSe)_y структур (рис. 2.). Спектральная фоточувствительность pSi-n(Si₂)_{1-x}(Ge₂)_x(ZnSe)_y структуры охватывает диапазон энергий от 0.98 до 3 эВ. На графике спектральный чувствительности pSi-n(Si₂)_{1-x}(Ge₂)_x(ZnSe)_y структуры наблюдается пики чувствительности при энергии фотонов 2.4 и 2.68 эВ обусловлены молекулы ZnSe(рис. 2.). Это, по видимому, обуславливает возникновению примесного уровня ZnSe расположенного на $\Delta E_i = E_{ph} - E_{g,Si}$ ниже потолка валентной зоны кремния.

Твердые растворы, полученные на основе Si, Ge и соединений ZnSe обладающие рядом преимуществ по сравнению с обычным кремнием, рекомендованы для разработки солнечных элементов, имеющих диапазон фоточувствительности расширенный в

коротковолновую область спектра излучения, и эффективно работающих при более высоких температурах.

[1] Ж.И. Алфёров, В.М. Андреев, В.Д. Румянцев. Тенденции и перспективы развития солнечной фотоэнергетики. Физика и техника полупроводников. 2004. Том 38. № 8. ст. 937-948.

[2] A.S. Saidov, Sh. N. Usmonov, K. A. Amonov, M. S. Saidov, B. R. Kutlimuratov.

Photosensitivity of $pSi-n(Si_2)_{1-x-y}(Ge_2)_x(ZnSe)_y$ heterostructures with quantum dots. Applied Solar Energy. 2017. Vol. 53. No. 4. pp. 287–290.A.

INVESTIGATING PHYSICAL PROPERTIES OF ANTIMONY SELENIDE THIN FILMS FABRICATED BY CMBD METHOD

Khurramov Ramazon Ravshanovich

1. Introduction

Today, world researchers pay special attention to the use of Sb₂Se₃ layers as an absorbing layer for thin film solar cells [1]. This is due to the fact that the physical properties of this material (p-type conductivity, band gap $E_g = 1.01-1.2 \text{ eV}$, high absorption coefficient $\alpha > 10^5 \text{ cm}^{-1}$, low melting point and high partial pressure) makes it possible to grow high quality films at low temperatures. In addition, the elements included in these materials have a relatively low cost, abundance in nature Sb and Se with 0.2 and 0.05 ppm (parts per million) respectively, stability under external influences and nontoxicity [2].

Currently, the efficiency of thin-film solar cells based on Sb₂Se₃ is 9.2% [3]. The efficiency of a Sb₂Se₃ solar cell is highly dependent on the physical properties of the base layer. To date, several methods were used for fabrication of Sb₂Se₃ films: vacuum-free (electrodeposition, chemical bath deposition, spin-coating), high and low vacuum methods (thermal evaporation, vacuum evaporation, rapid thermal evaporation, vapor transport deposition, magnetron sputtering, close-spaced sublimation). For all mentioned fabrication methods, the conductivity value of Sb₂Se₃ films is rather low $10^{-8} \div 10^{-6}$ (Ohm × cm)⁻¹. The efficiency of solar cell can be improved by increasing this value. The conductivity can be varied by the deviation from the stoichiometry of the films composition, owing to intrinsic point defects or by injection of extrinsic point defects, i.e. by impurities. Earlier in [4], we reported characteristics of Sb₂Se₃ fabricated by chemical molecular beam deposition CMBD from Sb₂Se₃ precursor.

2.Experimental details

High purity of 99.999% Sb and Se granules were used as precursors. The sedimentation process of the Sb_xSe_y films was carried out in the atmospheric pressure hydrogen flow and at substrate temperature of 500°C. Soda-lime glass was cleaned using detergent, deionized water, acetone, and ethanol in sequence and used as substrate. At the Sb (800–900°C) and Se (400–500°C) evaporation temperatures, granules transfer into the vapor phase. Films thickness was $2-3 \mu m$. The electrical properties were measured by the 2-probe method. The type of conductivity of the films was determined by thermoprobe method. Structural, morphological and optical properties of thin films are investigated using from X-ray diffractometer, SEM and spectrophotometer.

3. Results and discussion

The dark conductivity of the Sb_xSe_y films strongly depends on the Sb/Se ratio. The dependence of the conductivity of samples on Sb/Se ratio is presented in Fig. 1.

Fig. 1. The dependence of the conductivity of Sb_xSe_y films on the Sb/Se ratio

It is seen that the conductivity is almost the same $(\sim 10^{-5} (\text{Ohm} \times \text{cm})^{-1})$ for Sb/Se ratios in the range 0.3 $\div 0.66$. We have observed a drastically increasing of the conductivity from $10^{-5} (\text{Ohm} \times \text{cm})^{-1}$ at Sb/Se ≥ 0.66 up to $10^2 (\text{Ohm} \times \text{cm})^{-1}$ at Sb/Se = 0.9 and it is almost unchanged until Sb/Se =1.22. Moreover, we have established conversion of the type of the charge carriers, depending on the Sb/Se ratio. Samples demonstrated p-type conductivity at Sb/Se ≤ 0.7 and n-type conductivity at Sb/Se ≥ 0.8 . From this behavior, we can see that there is "a tipping point" at Sb/Se = 0.7, which corresponds to the stoichiometric composition of Sb₂Se₃.

SEM images of samples show good crystal structure that consist of nanorods. With the increase of Se percentage, morphology exhibits better grain density. In Se poor thin films, Sb_xSe_y nanorods grow perpendicular to substrate and are correlated each other by Van der Waals force.

Fig.2. SEM images of different Sb/Se ratio samples

Thin films are deposited on Mo and SLG substrates. The structure of thin films with Mo substrate has good, proper orientation with (211) and (221) peaks which is perpendicular to substrate, while SLG substrate has parallel peaks. In Se rich samples the intensity of (221) peak is increased.

Fig.3. XRD patterns of different Sb/Se ratio samples

4. Conclusion

Band gap (E_g) of Sb_xSe_y thin films can change from 0.4 eV to 1.9 eV via different ratio of Sb/Se. By this way, we can get thin films which possess optimal parameters. Fig.4. indicates E_g of Sb_xSe_y thin film fabricated by CMBD method. It is about 1.2 eV at Sb/Se = 0.4 and this amount varied between 0.8 and 1.3 eV by changing the Sb/Se ratio. When we change Sb or Se percentage on films appear useful and harmful defects. By increasing Se percentage we can get the passivation of harmful defects at the bulk.

The conductivity of Sb_xSe_y films was studied as a function of the vapor phase mixture of Sb and Se. By the precise control of the Sb/Se ratio we succeeded in obtaining stoichiometric Sb2Se3 films. It is also found out that we can control the conductivity by deliberately introducing the deviation from the stoichiometry. The conductivity was varied in the wide range of $10^{-5}-10^2$ (Ohm \times cm)⁻¹ and samples had p- and n-type of conductivity depending on Sb/Se ratio. At Sb/Se=0.4 morphology, structure and band gap of film is more better than other ratios.

List of used literatures

[1] Mavlonov A., Razykov, T., Minemoto T., Zu X., Li S. et al., 2020. A review of Sb₂Se₃ photovoltaic absorber materials and thin-film solar cells. Sol. Energy 201, 227–246

[2] Zhou, Y., Leng, M., Xia, Z., 2014. Solution-processed antimony selenide heterojunction solar cells. Adv. Energy Mater. 4 (8), 1301846

[3] Li, Z., Liang, X., Li, G., Liu, H., Zhang, H., 2019. 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells. Nat. Commun. 10 (1) https://doi.org/10.1038/s41467-018-07903-6.

[4] Razykov, T.M., Shukurov, A.K., Kuchkarov, K.M., Ergashev, B.A., Khurramov, R.R., Mavlonov, A., 2019. Morphological and structural characteristics of Sb₂Se₃ thin films fabricated by chemical molecular beam deposition. Appl. Solar Energy 55 (6), 376–379

Zn_xSn1-xSe юпқа қатламларининг электрофизик хоссалари Р.Т. Йўлдошов

Физика-техника институти, Чингиз Айтматов 2Б, Ташкент, 100084, Узбекистан.

Анотация: Ушбу тезисда Zn_xSn_{1-x}Se қаттиқ қоришма юпқа қатламларининг электрофизик хоссаларини уларнинг физик-кимёвий параметрларига боғлиқлигини тадқиқ этилиш натижалари муҳокама этилади ва бунда айнан қуйдагилар аниқланди: юпқа қатламларнинг қаттиқ қоришмалар кимёвий таркиби буйича (ρ) солиштирма қаршилик, (μ) заряд ташувчилари ҳаракатчанлиги ва (n) концентрацияси ўртасидаги боғликлар.

Юпқа қатламли қуёш элементларинг CdTe, Cu(InGa)Se асосидаги юпқа қатламли қуёш элементларининг ютувчи қатламларига кирувчи элементларнинг ноёблиги Те, In (ер юзида кам тарқанлиги) ва Ga қимматлиги кенг ишлаб чиқаришда тўсқинликларга учрамоқда [1]. Экологик ва кенг кўламда ишлаб чиқариш учун материаллар етишмаслиги билан боғлиқ муаммоларни бартараф этиш асосий долбзарб вазифалардан хисобланиб келинмокда. Бугунги кунда юқорида қайд этилган камчиликларни бартараф этиш учун юпқа қатламли куёш элементларининг ютувчи база катламини куйидаги арзон ва зарарсиз янги материаллар Sn(Se,S), Cu₂Sn(Se,S)₃, Cu₂O, CuSbS₂, Cu₃N, FeS₂, Sb₂Se₃, Sb₂S₃ ва Sb₂(Se,S)₃ билан алмаштирилмокда [2, 3]. Олинадиган юпқа қатламлар электрофизик хоссаларидан бири кичик солиштирма қаршилик эга булса қуёш элементлари тайёрлашда моносибди. Аксарят қуёш элементларини кетма кет қаршилиги уни фотоэлектрик хоссаларига катта таъсир кўрсатади. Бунга сабаб юпқа қатламлардан ташкил топган сендвич қуёш элементларида ток ўтиш механизми йўналиши тагликка перпендикулярдир. Яни ёруғлик тушиши *n*-тур қатлам тарафдан бўлса *p*-тур ютувчи қатлам солиштирма қаршилигига боғлиқ равишда қуёш элементини фойдали иш коэффиценти ўзгаради. Zn_xSn_{1-x}Se юпқа қатламлари бу талабларга мос келади сабаби кичик солиштирма қаршилик эга. Zn_xSn_{1-x}Se юпка катламларининг электрофизик параметрлари 1-Жадвалда келтирилган. Бунда таркибни ўзгариши билан ўтказувчанлик туридаги инверсия, солиштирма қаршилик, заряд ташувчилари харакатчанлигини ва заряд ташувчилари концентрациясини ўзгариши аниқланди.

Zn _x Sn _{1-x} Se	x=0	x=0.04	x=0.06	x=0.08	x≤0.3	x=0.55
Ўтказувчанлик тури	р	р	р	р	<i>p</i> , (0.3 <x, <i="">n)</x,>	п
Электрўтказувчанлик (Ом·см) ⁻¹ , 300К бўлишида	15	0.16	1.10-1	2 .10-1	4 ·10 ⁻³	1 .10-6
Солиштирма қаршилик (Ом·см), 300К бўлишида	6 ·10 ⁻²	2.10-1	10	50	$2 \cdot 10^4$	$5 \cdot 10^{7}$
заряд ташувчилари харакатчанлигини, см ² /В·сек	24		22	19	12	
заряд ташувчилари концентрациясини, см ⁻³	1017		$5 \cdot 10^{16}$	10 ¹⁶	$6 \cdot 10^{14}$	
Таглик харорати Т _т , (⁰ C)	550	550	550	550	550	550

Zn_xSn_{1-x}Se юпқа қатламлари таркибни ўзгариши билан ўтказувчанлик туридаги инверсия намоён бўлди, айнан таркибларнинг 0≤x<0,3 оралиғида бўлишида намуналар ртурдаги ўтказувчанликка, 0,3<x ≤ 55 бўлишида эса п-тур ўтказувчанликка эга бўлди. Zn_xSn_{1-x}Se қаттиқ қоришма таркиби кенг соҳали компонент томонга силчишида ўтказувчанлик туридаги инверсия тур ўтказувчанлик кузатилади ва солиштирма электр қаршилигини ортиши эса заряд ташувчи эркин электронлар консентрацияси камайиши ва Zn_xSn_{1-x}Se юпқа қатламларининг поликристал таркибида ZnSe моляр улушини ошиши билан изоҳланади.

Zn_xSn_{1-x}Se юпқа қатламларида кенгсохали компонентнинг моляр миқдорини ортиши билан µ заряд ташувчилар ҳаракатчанлиги қиймати камаяда, яъни бу x=0 бўлишида 24 см²/В·сек, ва х=0,3 бўлишида 10 см²/В·сек бўлади. Zn_xSn_{1-x}Se юпқа қатламларида х нинг қиймати ошиб боришида кристалчалар ҳажмининг камайиши натижасида улар орасидаги кристалчалар чегаралараро зичлиги ошади ва кристалчалар чегаралараро зарядлар сочилиш маказлари ортади, бу эса заряд ташувчининг харакатчанлигини камайтиради. Заряд ташувчиларнинг харакатчанлиги сочилиш механизми билан белгиланади. Заряд ташувчининг сочилишининг бир нечта асосий (кристал панжара механизмлардан иборат, фононларда атомларининг термал тебранишлари); ионлашган аралашмалар, панжара макродефектлари (дислокациялар, кристалчалар чегаралари ва бошкалар). Мукаммал кристалларда макродефектлар паст консентрацияси туфайли заряд ташувчиларнинг сочилиши эътиборга олинмайди. Аммо поликристалларда кристалчалар чегаралараро зичлиги заряд сочилиш механизмиларга катта таъсир этади. Шубхасиз, харакатчанлик канчалик юкори бўлса, кристалл структура идеалга яқинроқ бўлади.

 $Zn_xSn_{1-x}Se$ юпқа қатламлари учун асосий заряд ташувчилар концентрацияси кенг соҳали компонентнинг моляр миқдорини ортиши билан камаяди. $Zn_xSn_{1-x}Se$ юпқа қатламларидаги асосий заряд ташувчиларнинг концентрацияси коваклар x=0 бўлишида $5 \cdot 10^{17}$ см⁻³ дан , x=0,3 бўлишида 10^{14} см⁻³ гача камаяши кузатилди. Бунга сабаб Zn атоми бир қисми Sn атоми ўрнини олади, кейинги Zn нинг моляр улиши ортиши акцептор сатҳ берувчи тугунлараро Se_i нуқсони билан реаксияга киришиб ZnSe фазалари ҳосил қилади, рентген фаза анализ натижаларидан ZnSe моляр нисбати ўсишини кўриш мумкин. Бу тугунлараро Se_i нуқсонининг консентрацияси камайиши, акцепторлар концентрация-сининг пасайишига олиб келади. Шу билан биргаликда Zn_xSn_{1-x}Se қаттиқ қоришма таркиби кенг соҳали компонент томонга силжишида коваклар ва донорлар компенсацияси юзага келади. Zn_xSn_{1-x}Se *р*-турдаги юпқа катламларининг электрофизик катталиклари самарали қуёш элементларининг талаблариги мос келиши, улар асосида арзон ва самарали қуёш элементларини олишга имкон беради.

Фойдаланилган адабиётлар

- Martin A. Green, Ewan D. Dunlop, Jochen Hohl-Ebinger, Masahiro Yoshita, Nikos Kopidakis, Xiaojing Hao. Solar cell efficiency tables (version56), //Prog Photovolt Res Appl. 2020, , pp. 629– 638
- 2. https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovo ltaics-Report.pdf
- 3. T.M. Razykov, C.S. Ferekides, D.Morel, E.Stefanakos, H.S.Ullal, H.M. Upadhyaya. Solar photovoltaic electricity: Current status and future prospects.//Solar Energy 85,2011, pp.1580–1608.

Multiplicity dependencies of midrapidity transverse momentum distributions of the charged pions and kaons, protons and antiprotons in proton-proton collisions at $(s)^{1/2}=7$ TeV at the LHC

Khusniddin K. Olimov^{1*}, Fu-Hu Liu^{2#}, Kobil A. Musaev¹, Maratbek Z. Shodmonov¹

¹Physical-Technical Institute of Uzbekistan Academy of Sciences, Chingiz Aytmatov str. 2^b, 100084 Tashkent, Uzbekistan

²Institute of Theoretical Physics & Collaborative Innovation Center of Extreme Optics & State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China

<u>*khkolimov@gmail.com, kh.olimov@uzsci.net</u> #fuhuliu@sxu.edu.cn

We have analyzed p_t spectra of identified charged particles at ten different groups of $\langle dN_{ch}/d\eta \rangle$ in inelastic proton-proton collisions at $(s)^{1/2}=7$ TeV at mid-y at the LHC, measured by ALICE Collaboration [1.]. We have studied the evolution of collective characteristics of collision system with varying $\langle dN_{ch}/d\eta \rangle$ by means of combined (simultaneous) minimum χ^2 model fits of p_t distributions of identified charged particles in each group of charged-particle multiplicity density, employing the Tsallis distribution function with thermodynamical consistence and Hagedorn function with included transverse (radial) flow over measured long p_t regions of hadrons. The combined minimum χ^2 fits with Tsallis function with thermodynamical consistence and Hagedorn function with included transverse (radial) flow reproduce quite well p_t distributions of the studied particle species in ten different groups of $\langle dN_{ch}/d\eta \rangle$ in proton-proton collisions at $(s)^{1/2}=7$ TeV. The findings of the present analysis for p+p collisions at $(s)^{1/2}=7$ TeV have been compared systematically with the respective results of recent work [2] for p+p collisions at $(s)^{1/2}=13$ TeV.

The non-extensivity parameter q values for the charged pions and kaons, protons and antiprotons in proton-proton collisions at $(s)^{1/2}=7$ TeV proved to be noticeably smaller as compared to those in proton-proton collisions at $(s)^{1/2}=13$ TeV in the whole analyzed $\langle dN_{ch}/d\eta \rangle$ range. This suggests that the systems produced in proton-proton collisions at $(s)^{1/2}=7$ TeV have the noticeably larger degree of equilibrium and thermalization than those at $(s)^{1/2}=13$ TeV.

The obtained effective temperatures *T* of Tsallis function with thermodynamical consistence have shown consistent increase with increasing $\langle dN_{ch}/d\eta \rangle$ in proton-proton collisions at $(s)^{1/2}=7$ TeV in agreement with the similar result [2] obtained in proton-proton collisions at $(s)^{1/2}=13$ TeV. The respective *T* versus $\langle dN_{ch}/d\eta \rangle$ dependence in proton-proton collisions at $(s)^{1/2}=7$ TeV has been described well with the simple power function $T = A \cdot \langle \frac{dN_{ch}}{d\eta} \rangle^{\alpha}$ with the same value $\approx 1/3$ of exponent parameter as that obtained [2] in proton-proton collisions at $(s)^{1/2}=13$ TeV. Comparing relation $T \sim \varepsilon^{1/3}$ extracted in present analysis and in Ref. [2] with the relation $T \sim \varepsilon_{\pi}^{1/4}$ for the simple model of an ideal gas of massless pions, it is found that dependencies on energy density of the effective temperatures of the systems, created in proton-proton collisions at $(s)^{1/2}=7$ TeV and 13 TeV, and that of an ideal pion gas are compatible to each other due to closeness of the corresponding exponent parameters. The difference observed between exponent parameter (1/3) obtained in present analysis and that (1/4) for an ideal gas of massless pions could probably be explained by nonzero viscosity to entropy ratio $((\eta/s) > 0)$ and some nonzero coupling existing between the constituents of the dense medium produced in proton-proton collisions at high energies of LHC.

It is obtained that the transverse (radial) flow emerges at $\langle dN_{ch}/d\eta \rangle \approx 6$ and then increases, becoming significant at higher multiplicity events and attaining the maximum value $\langle \beta_t \rangle = 0.29 \pm 0.02$ at the highest studied average multiplicity density $\langle dN_{ch}/d\eta \rangle = 21.3 \pm 0.6$ in proton-proton collisions at $(s)^{1/2} = 7$ TeV. These results are consistent with the similar emergence and development

of transverse radial flow in higher multiplicity events in proton-proton collisions at $(s)^{1/2}=13$ TeV at the LHC demonstrated in Ref. [2].

We have estimated from analysis of T_0 and $\langle \beta_t \rangle$ versus $\langle dN_{ch}/d\eta \rangle$ dependencies, extracted employing Hagedorn function with included transverse flow, that the probable deconfinement phase transition in proton-proton collisions at $(s)^{1/2}=7$ TeV takes place at $\langle dN_{ch}/d\eta \rangle \approx 6.1\pm0.3$, which is noticeably smaller of the corresponding estimate ($\langle dN_{ch}/d\eta \rangle \approx 7.1\pm0.2$), obtained recently in proton-proton collisions at $(s)^{1/2}=13$ TeV in Ref. [2]. We have also estimated the corresponding critical energy densities for probable deconfinement phase transitions in p+p interactions at $(s)^{1/2}=7$ and 13 TeV at the LHC to be 0.67 ± 0.03 GeV/fm³ and 0.76 ± 0.02 GeV/fm³, respectively, being significantly lower of the critical QCD energy density (1 GeV/fm³). The deduced noticeably larger degree of equilibrium and thermalization at $(s)^{1/2}=7$ TeV than that at $(s)^{1/2}=13$ TeV energy could probably explain our finding that the probable deconfinement phase transition in p+p collisions at $(s)^{1/2}=7$ TeV takes place at the lower estimated critical energy density (0.67 ± 0.03 GeV/fm³) as compared to that (0.76 ± 0.02 GeV/fm³) in p+p collisions at $(s)^{1/2}=13$ TeV.

References

[1.] ALICE Collab. (S. Acharya *et al.*), *Phys. Rev. C* **99** (2), 024906 (2019), arXiv: 1807.11321v2 [nucl-ex].

[2.] Kh.K. Olimov *et al.*, *Int. J. Mod. Phys. A* **36**, 2150149 (2021). <u>https://doi.org/10.1142/S0217751X21501499</u>

Multiplicity dependencies of midrapidity transverse momentum spectra of identified charged particles in p+p collisions at (s)^{1/2}=13 TeV at LHC

Khusniddin K. Olimov^{1*}, Fu-Hu Liu^{2#}, Kadyr G. Gulamov¹, Kobil A. Musaev¹, Kosim Olimov¹, Boburbek J. Tukhtaev¹, Nasir Sh. Saidkhanov¹, Kobil I. Umarov¹, Bekhzod S. Yuldashev³

¹Physical-Technical Institute of SPA "Physics-Sun" of Uzbekistan Academy of Sciences, Chingiz Aytmatov str. 2^b, 100084 Tashkent, Uzbekistan

²Institute of Theoretical Physics & Collaborative Innovation Center of Extreme Optics & State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China ³Institute of Nuclear Physics of Uzbekistan Academy of Sciences, Tashkent, Uzbekistan <u>*khkolimov@gmail.com, kh.olimov@uzsci.net</u> <u>#fuhuliu@sxu.edu.cn</u>

In present work, for describing the p_t spectra, $d^2N/(N_{ev}dp_t dy)$, of the identified charged particles in different event classes in inelastic p+p collisions at $(s)^{1/2}=13$ TeV, measured by ALICE Collaboration [1], we use the thermodynamically consistent Tsallis function

$$\frac{d^2 N}{N_{ev} dp_t dy} = 2\pi C_q p_t m_t \left(1 + (q-1)\frac{m_t}{T} \right)^{-\frac{q}{q-1}},\tag{1}$$

For description of the p_t spectra, $d^2N/(N_{ev}dp_tdy)$, of particles in present analysis, we use the Hagedorn function with the embedded transverse flow

Figure 1. (*a*) - The charged-particle multiplicity density $\langle dN_{ch}/d\eta \rangle$ dependencies of the extracted *q* values of thermodynamically consistent Tsallis function (Eq. 1) for the charged pions (•) and kaons (Δ), protons and antiprotons (•) in inelastic *p*+*p* collisions at (s)^{1/2}=13 TeV; (*b*) – the same for the obtained effective temperatures *T* (•) of thermodynamically consistent Tsallis function. The data points have been fitted with the simple power function $T = A \cdot \langle \frac{dN_{ch}}{d\eta} \rangle^{\alpha}$, where *A* is the fitting constant, and α - the exponent parameter. The dashed and solid curves are the power function fits of the whole range (10 data points), and of the whole range excluding the first data point (9 data points), respectively.

(2)

Figure 2. The charged-particle multiplicity density $<dN_{ch}/d\eta>$ dependencies of the extracted $\langle\beta_t\rangle$ (a) and T_0 (b) parameters of Hagedorn function with the embedded transverse flow (Eq. 2) in inelastic p+p collisions at (s)1/2=13 TeV; (c) – the same for the obtained n values of Hagedorn function with the embedded transverse flow for the charged pions (•) and kaons (\Box), protons and antiprotons (•).

Figure 1 summarizes the charged-particle multiplicity density $\langle dN_{ch}/d\eta \rangle$ dependencies of the extracted q and T parameters of thermodynamically consistent Tsallis function (Eq. 1) for the

charged pions and kaons, protons and antiprotons in inelastic p+p collisions at (s)^{1/2}=13 TeV, obtained from the combined minimum χ^2 fits. Figure 2 illustrates the $\langle dN_{ch}/d\eta \rangle$ dependencies of the obtained $\langle \beta_t \rangle$, T_0 and n parameters of Hagedorn function with the embedded transverse flow (Eq. 2) for the charged pions and kaons, protons and antiprotons in inelastic p+p collisions at $(s)^{1/2}=13$ TeV, extracted from the combined minimum χ^2 fits and presented in Table 3. It should be emphasized here the importance of studying the behavior of $\langle \beta_t \rangle$ and T_0 and their excitation functions due to their relation to map the phase diagram of QCD, though usually the chemical freeze-out temperature (T_{ch}) is used in such phase diagrams.

In present work [2] the midrapidity p_t distributions of the charged pions and kaons, protons and antiprotons at ten different classes of the average charged-particle multiplicity density $\langle dN_{ch}/d\eta \rangle$ in inelastic p+p collisions at (s)^{1/2}=13 TeV at midrapidity at LHC, measured [1] by ALICE Collaboration, have been analyzed. The evolution of collective properties of a system with changing $\langle dN_{ch}/d\eta \rangle$ has been studied by means of simultaneous (combined) minimum χ^2 model fits of the p_t spectra of the charged pions and kaons, protons and antiprotons in each class of chargedparticle multiplicity density, using the thermodynamically consistent Tsallis distribution function and Hagedorn function with the embedded transverse (radial) flow, applied over measured long p_t ranges of identified particles. The combined minimum χ^2 fits with thermodynamically consistent Tsallis function as well as Hagedorn function with the embedded transverse flow describe quite satisfactorily the p_t spectra of identified charged particles in ten different classes of chargedparticle multiplicity in inelastic p+p collisions at (s)^{1/2}=13 TeV.

The significant separation of non-extensivity parameter q values for mesons (pions and kaons) and baryons (protons and antiprotons) has been observed in the whole studied $\langle dN_{ch}/d\eta \rangle$ range in inelastic p+p collisions at (s)^{1/2}=13 TeV. The relation q(baryons) $\langle q$ (mesons) has been satisfied for the whole analyzed multiplicity (density) range of charged particles, in agreement with previous studies of high energy p+p collisions. The extracted effective temperatures T of thermodynamically consistent Tsallis function have demonstrated a steady rise with an increase in multiplicity of charged particles in inelastic p+p collisions at (s)^{1/2}=13 TeV. The corresponding T versus $\langle dN_{ch}/d\eta \rangle$ dependence is reproduced very well by the simple power function $T = A \cdot \langle \frac{dN_{ch}}{d\eta} \rangle^{\alpha}$ with exponent parameter $\approx (1/3)$ [2] in the whole analyzed range $\langle dN_{ch}/d\eta \rangle > 4$. Comparing $T \sim \varepsilon^{1/3}$ deduced in present analysis and $T \sim u^{1/4}$ for blackbody radiation, it is obtained that the energy density dependencies of the effective temperature of a system, created in p+p collision at $(s)^{1/2}=13$ TeV, and of the blackbody temperature are close to each other due to closeness of the respective exponents.

It is obtained [2] that the transverse (radial) flow becomes considerable at higher multiplicity events in p+p collisions at (s)^{1/2}=13 TeV, attaining the maximum value $\langle \beta_t \rangle = 0.28\pm0.02$ at the largest studied multiplicity density $\langle dN_{ch}/d\eta \rangle = 26.02\pm0.35$. The transverse flow is found to be practically absent in low multiplicity p+p collisions in region $\langle dN_{ch}/d\eta \rangle < 7$. From analysis of T_0 and $\langle \beta_t \rangle$ versus $\langle dN_{ch}/d\eta \rangle$ dependencies, extracted using Hagedorn function with the embedded transverse flow, it is estimated [2] that the probable onset of deconfinement phase transition (from hadronic to QGP droplet-like matter) in inelastic p+p collisions at (s)^{1/2}=13 TeV (at midrapidity) occurs at $\langle dN_{ch}/d\eta \rangle \approx 7.1\pm0.2$. This estimate proved to be below, but on the same order as, the critical value of $\langle dN_{ch}/d\eta \rangle$ for attaining the critical energy density ($\approx 1 \text{ GeV/fm}^3$), evaluated in present work, based on previous relativistic hydrodynamic calculations for p+p collisions at (s)^{1/2}=13 TeV.

References

[1.] ALICE Collab. (S. Acharya *et al.*), Multiplicity dependence of π , *K*, and *p* production in *pp* collisions at (s)^{1/2}=13 TeV, *Eur. Phys. J. C* **80**, 693 (2020), arXiv: 2003.02394v1 [nucl-ex].

[2.] Kh.K. Olimov *et al.*, *Int. J. Mod. Phys. A* **36**, 2150149 (2021). <u>https://doi.org/10.1142/S0217751X21501499</u>

Влияние слабой варизонности на инжекционные диффузионные режимы переноса тока в полупроводниковых *p-n-* структурах

Абдиев Журабек Музаффар угли

Аннотация. Исследованы процессы прохождения тока в p-n- структуре, изготовленной на основе полупроводника, имеющий слабый градиент дна зоны проводимости и потолка валентной зоны. Получено основное уравнение задачи в условиях наличия квазиэлектрических полей для электронов и дырок. Показана, что линейная варизонность увеличивает ток насыщения.

Ключевые слова: токопрохождение, кваиэлектрические поля, полупроводники с линейной варизонностью, ток насыщения.

1. Введение

Развитие нанотехнологии и коммерциализации научных продуктов привели к необходимости поискам новых доступных и многофункциональных материалов, способных заменить кремний в полупроводниковой электронике [1-4]. Среди этих материалов большое место занимают так называемые твёрдые растворы элементарных полупроводников и бинарных соединений III-V и II-VI, которым всем в той или иной степени присуща варизонность, т.е. зависимость ширины запрещенной зоны от длины образца [5-7]. Целью данной работы является исследование влияние варизонности на процессы токопереноса в p-n- структурах, -база которых является таким варизонным материалом.

2. Материалы и методы

Для исследования процесса переноса тока в *p*-*n*- структуре, имеющей базовую *n*область с варизонностью (см. рис. 1) воспользуемся основополагающими уравнениями с учетом градиента дна зоны проводимости $\frac{dE_C}{dx}$ и градиента потока валентной зоны $\frac{dE_V}{dx}$:

1. Токовые уравнения для электронов (j_n) и дырок (j_p) :

$$j_n = q\mu_n n\left(E + \frac{1}{q}\frac{dE_C}{dx}\right) + qD_n\frac{dn}{dx},$$

$$j_p = q\mu_n p\left(E + \frac{1}{q}\frac{dE_V}{dx}\right) - qD_p\frac{dp}{dx}.$$
(1)

(3)

(6)

Полная плотность тока

$$j = j_p + j_n,$$

2. Уравнения сохранения числа свободных носителей заряда с учетом стационарных условий $\frac{dn}{dt} = \frac{dp}{dt} = 0$:

$$\frac{dj_n}{dx} = -qU, \tag{4}$$
$$\frac{dj_p}{dx} = qU. \tag{5}$$

3. Уравнение Пуассона для полупроводника электронного типа проводимости:

Рис.1 Зонная диаграмма (a) и схема (b) p-n- гетероструктуры, (c) – ось координат, E_C – дна зоны проводимости, E_V – потолок валентной зоны, M – токосъемный металлический контакт

3. Обсуждение и результаты.

Из (1) – (3) можно найти выражение для напряженности электрического поля:

$$E = \frac{\frac{J}{q\mu_p} - \frac{kT}{q} \left(b \frac{dn}{dx} - \frac{dp}{dx} \right) - \left[bn_q^2 \left(\frac{dE_C}{dx} \right) + p_q^2 \left(\frac{dE_V}{dx} \right) \right]}{bn + p},$$
(7)

$$D_p \frac{d^2 p}{dx^2} + \frac{(b-1)}{N_d} D_p \left(\frac{dp}{dx} \right)^2 - \frac{dp}{dx} \left\{ \frac{1}{qN_d} + \mu_p \left[\frac{1}{q} \frac{dE_C}{dx} + (b-1) \frac{1}{q} \frac{dE_V}{dx} \right] \right\} - \frac{E_C(x)}{E_V(x)} = E_{C0} + K_1 x,$$
(9)

$$E_V(x) = E_{V0} + K_2 x,$$
(10)

$$\frac{d^2 p}{dx^2} - \frac{dp}{dx} \left\{ \frac{J}{qN_d D_p} + \frac{\mu_p}{D_p} \left[\frac{1}{q} K_1 + (b-1) \frac{1}{q} K_2 \right] \right\} - \frac{p-p_n}{L_p^2} = 0,$$
(11)

где $L_p = \sqrt{D_p \tau_p}$ – диффузионная длина неосновных носителей (дырок).

$$p = C_1 e^{-\left(\frac{1}{L_p} + \frac{A}{2}\right)x} + C_2 e^{\left(\frac{1}{L_p} - \frac{A}{2}\right)x},$$

$$A = \frac{J}{qN_d D_p} + \frac{1}{kT} [K_1 + (b-1)K_2],$$

$$I_0 = qD_p \left(\frac{1}{L_p} + \frac{K_1 + (b-1)K_2}{2kT}\right)$$
(12)
(12)
(12)

4. Заключение

Итак, как показывает проведенное исследование даже в условиях слабой линейной варизонности зависимость тока от напряжения в условиях инжекции в *p*-*n*- структурах меняется – ток насыщения возрастает на величину $qD_p \cdot \frac{K_1+(b-1)K_2}{2kT}$, т.е. непосредственно зависит как от варизонности для зоны проводимости (K_1), так и от варизонности потолка валентной зоны. Экспериментально известны случаи, когда меняется только $E_C(x)$, а E_V = const или наоборот. В этих случаях выражение для тока насыщения упростится соответственно.

Литературы

[1] К.А. Валиев, В.В. Вьюрков, А.А. Орликовский. Кремниевая наноэлектроника: проблемы и перспективы. Успехи современной радиоэлектроники, 2010, № 6, стр. 7-22. [2] Л.А. Кулакова, Б.Т. Мелех, С.А. Грудинкин, А.П. Данилов. Ge-Te-Se- и Ge-Te-Se-S- сплавы – новые материалы для акустооптических устройств ближнего, среднего и дальнего инфракрасных диапазонов. Физика и техника полупроводников, 2013, том 47, вып. 10. стр. 1435-1439.

[3] A. F. Skachkov. GaInP Semiconductor Compounds Doped with the Sb Isovalent Impurity. Semiconductors. Vol. 49 No. 5, 2015. pp 579-581.

[4] V. Rakovics, А.Н. Именков, В.В. Шерстнев, О.Ю. Серебренникова, Н.Д. Ильинская, Ю.П. Яковлев. Мощные светодиоды на основе гетероструктур InGaAsP/InP. Физика и техника полупроводников, 2014, том 48, вып. 12. стр. 1693-1696.

[5] Ж.И. Алфёров. Двойные гетероструктуры: концепция и применения в физике,
электронике и технологии. Успехи физических наук, 2002, Том. 174, № 9. стр. 1068-1086
[6] А.С. Саидов, А.Ю. Лейдерман, А.Б. Каршиев. Термовольтаический эффект в
варизонном твердом растворе Si_{1-x}Ge_x (0≤ x≤ 1). Письма в журнал технической физики.
2016, Том. 42, № 14. стр. 21-27.

[7] SaidovA.S., UsmonovSh.N., SaidovM.S. Liquid-phase epitaxy of the (Si₂)_{1-x-y}(Ge₂)_x(GaAs)_y substitutional solid solution ($0 \le x \le 0.91$, $0 \le y \le 0.94$) and their electrophysical properties. Semiconductors. 2015. Vol.49, No.4. pp.547-550.

[8] А.Ю. Лейдерман. О возможности развития синергетических процессов в полупроводниках с глубокими примесями и дифектами. Фундаментальные и пркладные вопросы физики, сборник обзорных научных статей. 2014., 6-7 ноября, стр.86-97.

VARIATIONAL APPROXIMATION FOR 3D QUANTUM DROPLETS

Sherzod R. Otajonov

In Bose-Einstein condensate, a localized state with quantum fluctuations is known as quantum droplets (QDs). The study of the properties of quantum droplets attracts much interest since the pioneering paper [1], where the author showed in two-component bosonic mixtures the mean-field (MF) term and quantum fluctuation so-called Lee-Huang-Yang (LHY) [2] term can have opposite signs. The balance between these terms leads to the formation of quantum droplets. The calculations of the LHY terms generate different nonlinear forms in different space geometries, [3, 4], in local Bose-Einstein condensates this terms proportional to $|\psi|\psi$, $|\psi|^2 \log(|\psi|^2) \psi$ and $|\psi|^3 \psi$, 1D, 2D and 3D respectively. Different aspects of QDs have been studied in a large number of papers. Dynamics of 1D QDs was studied in [4, 5]. Generation of the QDs through modulational instability in the 1D binary condensate is investigated in [6]. Two-dimensional QDs and vortices have been considered in [7, 8]. In our previous research, we mentioned that the variational approximation (VA) with super-Gaussian trial function gives good agreement for the description of the 1D and 2D QDs [5, 8]. The main purpose of this work is to develop a variational approach for 3D QDs.

Let us consider a mixture of Bose-Einstein condensate in three-dimensions. In symmetric case, the system can be described by single dimensionless Gross-Pitaevskii equation (GPE) [1].

$$i\psi_t + \frac{1}{2}\nabla^2\psi + \alpha|\psi|^2\psi - \beta|\psi|^3\psi = 0 \tag{1}$$

For analyzing Eq.(1) we employ super-Gaussian trial function. The advantage of choosing this function is that, it allows to describe the small (bell shape) and as well as large droplet (flat-top shape) states. Substituting trial function into Lagrangian density of Eq.(1) and integrating over space yields the averaged Lagrangian. By using Euler-Lagrangian equations we have found the dynamical equations for variational parameters. Analyzing these equation we found the stationary parameters of QDs, effective potential, and frequency of small oscillations. For large N the width of the QDs increases, while the maximum density approaches to a constant which shows the behavior of incompressible liquids. It is shown that, the VA gives good description for the stationary and dynamical properties of QDs.

Acknowledgments:

The author Sh. R. Otajonov thanks Prof. F. Kh. Abdullaev and Dr. E. N. Tsoy for their valuable comments and discussions.

References

- [1] D. S. Petrov, Phys. Rev. Lett. 115, 155302 (2015).
- [2] T. D. Lee, K.Huang, and C.N.Yang, Phys. Rev. 106, 1135 (1957).
- [3] D. S. Petrov, and G. E. Astrakharchik, Phys. Rev. Lett. 117, 100401 (2016).
- [4] G. E. Astrakharchik, B. A. Malomed, Phys. Rev. A 98, 013631 (2018).
- [5] Sh. R. Otajonov, E. N. Tsoy, F. Kh. Abdullaev, Phys. Lett. A, 383, 125980 (2019).
- [6] T. Mithun, et.al., Symmetry 12, 174 (2020).
- [7] Y.Li, et.al., Phys. Rev. A 98, 063602 (2018).
- [8] Sh. R. Otajonov, E. N. Tsoy, F. Kh. Abdullaev, Phys. Rev. E, 102, 062217 (2020).

Sb₂Se₃ YUPQA QATLAMLARINING STRUKTURAVIY, MORFOLOGIK, OPTIK VA ELEKTROFIZIK XOSSALARIGA SELENIZATSIYANING TASIRI

Olimov A

O'z R FA Fizika-texnika instituti, O'zbekiston, 100084, Toshkent, Chingiz Aytmatov ko'chasi

Bugungi kunda jahon tadqiqotchilari Sb₂Se₃ qatlamlarini quyosh elementlari uchun yutuvchi qatlam sifatida ishlatishga alohida e'tibor qaratmoqdalar. Buning sababi shundaki, bu materiallarning fizik xususiyatlari (p-tipli o'tkazuvchanlik, taqiqlangan soha kengligi E_g =1.01-1.3 eV, yuqori yutilish koeffitsienti α >10⁵ sm⁻¹) Cu(In, Ga) (Se, S)₂ xususiyatlariga juda yaqin [1]. Shuningdek uning arzon, ekologik jihatdan zararsiz, hamda yer yuzida keng tarqalganligidir. Bu ekologik toza va samarali quyosh modullarini ishlab chiqarish imkonini beradi, shuningdek ularni sanoat miqyosida keng ishlab chiqarishga yo'l ochadi.

Yupqa qatlamli quyosh elementlarining samaradorligi asosan asosiy qatlamning fizik hususiyatlari bilan bog'liq. Hozirgi vaqtda quyosh elementlarida asosiy qatlamni olishning vakuumsiz, yuqori va past vakuumli usullari qo'llaniladi [2]. Quyosh elementining asosiy qatlamining fizik xususiyatlari usullarning texnologik parametrlariga sezilarli darajada bog'liq.

Bu ilmiy ishning maqsadi, turli miqdorda Se elementi bilan boyitilgan Sb₂Se₃ yupqa qatlamlarining strukturaviy va elektrofizik xossalari tadqiq etish. Boshlang'ich material sifatida Sb₂Se₃ kukuni (99.999 %) va toza Se elementi ishlatilgan bo'lib, ular kimyoviy molekulyar dastalarda olish (KMDO) usuli bilan vodorod atmosfera bosimida olingan. Vodorod gazining oqimi 20 sm³/min. Sb₂Se₃ yupqa qatlamini bir vaqtda Sb₂Se₃ kukuni va Se elementining bug' fazadagi miqdorini o'zgartirish orqali olingan. Sb₂Se₃ kukunining buglanish harorati o'zgarmas 900 °C da va Se elementining bug'lanish harorati (350°C, 370 °C, 390 °C, 410 °C, 430 °C) o'zgartirib borildi.

1-rasmda Se elementi bilan boyitilgan Sb₂Se₃ yupqa qatlamining rengen analizi berilgan. Rasmdan ko'rinib turibdiki, hosil bo'lgan intensiv cho'qqilar (JCPDS: 15-0861) kartotekadagi cho'qqilarga muvofiq bo'lib, bu esa Sb₂Se₃ yupqa qatlami polikristall ortorombik strukturaga ega ekanligidan dalolat beradi.

1-rasm. Se elementi bilan boyitilgan Sb₂Se₃ yupqa qatlamining rengen analizi

2-rasmda σ elektr o'tkazuvchanlikning Se ning bug'lanish haroratiga bog'liqligi ko'rsatilgan. Rasmdan ko'rinib turibdiki bug'lanish, harorat 350 °C va 390 °C oralig'ida Sb₂Se₃ yupqa qatlamining elektr o'tkazuvchanligi ko'tarildi. 390 °C dan yuqori haroratda elektr o'tkazuvchanligi kamayishi aniqlandi. Se ning harorati ko'tarilishi bilan elektr o'tkazuvchanligining oshishi Se_{Sb}-antistrukturali nuqtaviy nuqsonlarining xosil bo'lishi bilan izoxlanadi. Yani kovaklarning konsetratsiyani oshiradi. Harorat ortib borgan sari Se_{Sb}antistrukturali nuqtaviy nuqsonlar donor hususiyatiga o'tib kovaklar konsentratsiyasini kamayishiga olib kelishi, elektr o'tkazuvchanligi kamayishiga sabab bo'ladi.

2-rasm. Elektr o'tkazuvchanlikning Se ning bug'lanish haroratiga bog'liqligi

Foydalanilgan adabiyotlar ro'yxati:

[1] T. Razykov, A. Mavlonov, Fazal Raziqa, Jiantuo Gana, JaKapan Chantanac, Уи kawanoc, Takahito Nishimurad, Haoming Weie, Andriy Zakutayev, Takashi Minemotoc, Xiaotao Zua, Sean Lig, Liang Qiaoa. A review of Sb2Se3 photovoltaic absorber materials and thin-f11m solar cells. Solar Energy, v. 201 ,pp.227-246.•,

[2] X.M. wang, R.F. Tang, Y.W. Yin, H.X. Jи, S.A. И, С.F. пи, T. Chen, Interfacial engineering for high efficiency solution processed Sb2S3 solar cells, Sol. Energy Mater. Sol. Cells 189 (2019) 5-10.;X. Ин, J. Chen, M. Luo, M. Leng, Z. ма, У. пон, S. оп, D.J. хие, ь. Lv, H. Huang, D ми, J. Tang, Thermal evaporation and characterization of Sb2S3 thin f11m for substrate Sb2S*/CdS solar cells, ACS Appl. Mater. Interfaces 6 (2014) 10687-10695.

[3] Razykov T. M. Chemical molecular beam deposition of II-VI binary and temary compound f11ms in gas f10w. Applied Surface Science, 1991, v.48/49, N1, P.P.89-92.

P-N O'TISHLARDAGI TOK TASHISH JARAYONLARINING UMUMLASHGAN NAZARIYASI

J.Sh. Abdullayev, O.A. Abdulxayev.

Kirish.

Hozirgi kunda elektrotexnika qurilmalari jadal su'ratlarda rivojlanmoqda hamda bunda yarimo'tkazgichli asboblar alohida oʻringa ega boʻlib, ushbu asboblarning ishlashi asosan p-n o`tishga asoslangan. Shu nuqtai nazardan, ushbu ishda p-n oʻtishdagi tok tashish mexanizmlarini umumlashgan xol uchun tadqiq etib, tok kuchini kuchlanishga bogʻliqligi uchun umumiy ifoda keltirdik. Ma'lumki hozirgi kunda yarimoʻtkazgichli asboblarda kechuvchi elektr fizikaviy jarayonlarni tadqiq qilishda quyidagi (1) tenglamalar sistemasidan foydalaniladi [1,2,3]:

$$J_{p}(x,t) = q \cdot \mu_{p} \cdot p(x,t) \cdot E(x,t) - q \cdot D_{p} \cdot \Delta p(x,t)$$
(1.1)

$$J_n(x,t) = q \cdot \mu_n \cdot n(x,t) \cdot E(x,t) + q \cdot D_n \cdot \Delta n(x,t)$$
(1.2)

$$\frac{\partial p(x,t)}{\partial t} = -\frac{1}{q} \cdot \Delta J_p(x,t) + G_p - R_p$$
(1.3)

$$\frac{\partial n(x,t)}{\partial t} = \frac{1}{q} \cdot \Delta J_n(x,t) + G_n - R_n$$
(1.4)

$$\varepsilon \cdot \frac{\partial E(x,t)}{\partial x} = q \cdot \left[p(x,t) - n(x,t) + N_{\mathsf{D}}(x,t) - N_{\mathsf{A}}(x,t) \right]$$
(1.5)

Ammo ushbu differensial tenglamalarni yechishda p-n oʻtishning sohalari uchun chegaraviy shartlardan foydalaniladi va bu chegaraviy shartlardan yechimni izlash davomida bir qancha yaqinlashishlarga olib keladi[4]. Shu sababli, ba'zi tajribalarda tok kuchini kuchlanishga bogʻliqligini nazariy hisoblashlardan chetlanishini koʻrishimiz mumkin [5]. Bu chegaraviy shartlarda "QNR" sohalarda diffuzion mehanizmi, "SCR" sohada esa rekombinatsiya mehanizmi e'tiborga olingan.Ushbu kamchiliklarni bartaraf etish uchun (1,1) va (1.2) dagi tok zichligi formulalarini differensial koʻrinishdan integral koʻrinishga keltirib oldik:(bunda koordinata boshi sifatida p-n oʻtishning chegarasi tanlangan)

$$J = \left[\frac{q \cdot D_p \cdot n_i^2 \cdot \left\{ 1 - \exp\left(-\frac{qU}{k \cdot T}\right) \right\}}{N_D(x_n) \cdot \int_{-x_p}^{x_n} \exp\left(\frac{q \cdot \left(\varphi(x) - U_k\right)}{k \cdot T}\right) dx} + \frac{q \cdot D_n \cdot n_i^2 \cdot \left\{ 1 - \exp\left(-\frac{qU}{k \cdot T}\right) \right\}}{N_A(-x_p) \cdot \int_{-x_p}^{x_n} \exp\left(-\frac{q \cdot \left(\varphi(x) + U\right)}{k \cdot T}\right) dx} \right];$$
(2)

Ushbu ifodani (2) keltirib chiqarishda faqat fundamental formulalardan foydalanildi va hech qanday yaqinlashishlar ishlatilmadi. Integral koʻrinishda izlangan tok kuchini kuchlanishga bogʻliqligida, potensialni masofaga bogʻliqligini aniqlash kerak boʻladi. Potensialni masofaga bogʻliqligini, $-x_n < x < x_p$ oraliqda (3) tenglamalar sistemasini yechgan holda aniqlash mumkin:

$$\varepsilon \cdot \frac{\partial E(x,t)}{\partial x} = q \cdot \left[p(x,t) - n(x,t) + N_{\mathrm{D}}(x,t) - N_{A}(x,t) \right]$$
(3.1)

$$\frac{\partial n(x,t)}{\partial t} = D_n \cdot \frac{\partial^2 n(x,t)}{\partial x^2} + \mu_n \cdot p(x,t) \cdot \frac{\partial E(x,t)}{\partial x} + \mu_n \cdot E(x,t) \cdot \frac{\partial p(x,t)}{\partial x} - \frac{p_n(x,t) - p_{n0}(x,t)}{\tau_p}$$
(3.2)

$$\frac{\partial p(x,t)}{\partial t} = D_p \cdot \frac{\partial^2 p(x,t)}{\partial x^2} - \mu_p \cdot n(x,t) \cdot \frac{\partial E(x,t)}{\partial x} - \mu_p \cdot E(x,t) \cdot \frac{\partial n(x,t)}{\partial x} - \frac{n_p(x,t) - n_{p0}(x,t)}{\tau_p}$$
(3.3)

Soʻngra (2) ifodadagi integralni hisoblab, p-n oʻtish uchun tok tashish mehanizmlarini umumlashgan nazariyasi tadqiq qilinishi mumkin. Biz taklif qilgan ikinchi ifodadan, yechim izlash bir necha yaqinlashishlarni oldini oladi.Injeksiyaning kichik darajalarida ($p, n \ll N_D, N_A$) (3.1) ifodadan potensialni masofaga bogʻliqligini aniqlab (2) ifodani yechimi aniqlanish mumkin boʻlib, bu esa oʻz navbatida rekombinatsiya mehanizmlarining p-n oʻtishdagi tok tashish mehanizmlariga ta'siri sustligini koʻrsatmoqda.

Adabiyotlar рўйхати:

[1]. S.M. Sze, "Physics of Semiconductur Devices", Third Edition, 2007.

[2]. Chin-Tang Sah, Robert N. Noyce, William Shockley, "Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics", 1957.

[3]. C.P, Please, "An Analiysis of Semiconductor P-N Junctions" IMA Journal of Applied Mathematics (1982) 28, 301-318.

[4]. B.Mazhari and A.Mahajan, "An Improved Interpretation of Depletion

Approximation in p-n Junctions" IEEE TRANSACTIONS ON EDUCATION, VOL.48, NO. 1, FEBRUARY 2005.

[5]. P.ASHBURN, D.V. MORGAN and M.J.HOWES, "A THEORETICAL AND EXPERIMENTAL STUDY OF RECOMBINATION IN SILICON P-N JUNCTIONS", Solid-State Electronic, 1975, Vol. 18, pp. 569-577. Pergamon Press.

QUYOSH ENERGIYASIDA OLINGAN Bi_{1,7}Pb_{0,3}Sr₂Ca_(n-1)Cu_(n)O_y (n=9-20) O'TA O'TKAZUVCHAN QATORNING ELEKTROFIZIK XUSUSIYATLARINI O'RGANISH.

Eshonqulov Elyor Baxtiyorovich

Annotatsiya. Yuqori parametrlarga ega o'ta o'tkazgich materiallarni olish zaruriyati ularning elektrofizik xususiyatlarini yuqori aniqlik bilan o'rganish imkonini beradigan usullardan foydalanishni talab qiladi. Ushbu maqola o'ta o'tkazuvchan materiallarning magnit sezgirligi va qarshiligini tekshirish usullarini loyihalash va ishlab chiqishni ko'rsatadi. Ushbu usullardan foydalanib, Quyosh energiyasida eritish usuli yordamida hosil qilingan Bi_{1,7}Pb_{0,3}Sr₂Ca_(n-1)Cu_(n)O_y (n=9-20) tarkibli namunalarda o'ta o'tkazuvchi T_c haroratiga o'tishining eksperimental ravishda aniqlangan natijalari keltirilgan.

O'ta o'tkazgich – bu, bir vaqtning o'zida nol qarshilikka ega ideal o'tkazgich va har qanday magnit maydonni o'z hajmidan siqib chiqaradigan ideal diamagnit materialdir [1]. O'ta o'tkazgichlar energiya tejovchi qurilmalarni yaratish uchun istiqbolli materiallar guruhiga kiritilgan. Bu materiallardan amaliy foydalanishga qo'yiladigan asosiy talablar yuqori O'ta o'tkazuvchi o'tish harorati T_c va yuqori kritik tok zichligi J_c hisoblanadi [2].

Energiya resurslari cheklanganligi sababli qayta tiklanadigan energiya manbalariga asoslangan texnologiyalar: suv, shamol va quyosh istiqbolli hisoblanadi. Quyosh texnologiyasi SFAQ - T so'nggi o'n yilliklarda Bi/Pb kupratlarini sintez qilish uchun ishlab chiqilgan. Ushbu texnologiya energiyani tejash muammosini hal qilish uchun ikki jihatni birlashtiradi: 1 - quyosh energiyasidan foydalaniladi; 2 - yangi o'ta o'tkazuvchan materiallar va keramika ishlab chiqilmoqda [3]. Yuqori haroratli oʻta oʻtkazuvchan Bi/Pb materiallarning elektrofizik xususiyatlarini oʻrganish uchun qarshilikni oʻlchashning 4 kontaktli va magnit sezuvchanlik usullaridan foydalanildi. Oʻlchash texnikasi ishlab chiqildi. Bi_{1,7}Pb_{0,3}Sr₂Ca_(n-1)Cu_(n)O_y (n=9-20) tarkibli oʻta oʻtkazuvchan keramikalarning magnit xossalari va qarshilik oʻzgarishining namunalarning olish shartlari va tarkibiga bogʻliqligi oʻrganildi.

Oʻlchash usullari asosida sxemalar tayyorlanib, yuqori aniqlikdagi oʻlchash asboblari yordamida 77-320K harorat oraligʻida oʻlchash ishlari olib borildi. Oʻlchash jarayonini bevosita kompyuterga yozib borish dasturi yaratildi va bu oʻlchash jarayoni aniqligini oshirdi. Bi/Pb yuqori haroratli oʻta oʻtkazuvchan materiallarni sintez qilish, vaqt va harorat boʻyicha eng maqul rejimlarni tanlab olish, hamda, ularning hosil boʻlish jarayonlari nazariy va amaliy jihatdan tahlil qilindi.

Katta Quyosh pechida olingan yuqori haroratli oʻta oʻtkazuvchan Bi/Pb materiallarning elektrofizik xususiyatlarini laboratoriya sharoitida oʻrganish orqali olingan natijalar, Gruziya Fanlar Akademiyasining E. Andronikashvili nomidagi Fizika instituti va AQShning San-Xose davlat universitetiga joʻnatilib, oʻrganilgan namunalarning natijalari bilan taqqoslandi.

Oʻlchash natijasida:

Bi_{1,7}Pb_{0,3}Sr₂Ca₄Cu₅O_y, Bi_{1,7}Pb_{0,3}Sr₂Ca₆Cu₇O_y, Bi_{1,7}Pb_{0,3}Sr₂Ca₈Cu₉O_y, Bi_{1,7}Pb_{0,3}Sr₂Ca₁₁Cu₁₂O_y va Bi_{1,7}Pb_{0,3}Sr₂Ca₁₉Cu₂₀O_y tarkibli namunalarni 848°C haroratda 115 soat sintez qilinganda namunalarning kritik haroratlari mos ravishda 100K, 110K, 122K, 107K va 114K ekanligi aniqlandi. Shuningdek olingan namunalarda oʻta oʻtkazuvchanlikni xarakterlovchi xususiyatlaridan biri hisoblangan Meyssner effekti kuzatilgan.

Bi_{1.7}Pb_{0.3}Sr₂Ca₁₁Cu₁₂O_y nominal tarkibi namunaning o'ta o'tkazuvchanlikka o'tishning magnit va 4-kontaktli qarshilik usuli bilan o'rganish natijalari (1-rasm a, b) da ko'rsatilgan.

1-rasm. O'ta o'tkazuvchanlikka o'tishning oqimga ta'sirining ko'rinishini magnit (a) va 4 kontaktli qarshilik (b) usullari bilan o'rganish

O'lchovlar tok va chastotaning turli qiymatlarida amalga oshirildi. Buning sababi, elektr xossalarini o'rganishda an'anaviy ravishda qo'llaniladigan chastota va tok parametrlari qattiq fazali reaktsiyalar usuli bilan sintez qilingan namunalar uchun optimal bo'lib, ularda atomlararo aloqalar eritish usuli bilan sintez qilingan namunalarga qaraganda kuchsizroqdir. 1 a,b - rasmda namunaning o'ta o'tkazuvchanlik holatiga o'tish harorati $T_c = 120-122K$ bo'lgan fazalarning ulushi 90% dan ko'prog'ini o'z ichiga olganligini ko'rsatadi.

Shuni ta'kidlash kerakki, quyosh texnologiyasi o'ziga xos, boshqa sharoitlarda amalga oshirilmagan, maxsus elektr xususiyatlariga ega nanostrukturali materiallarni olish usuli hisoblanadi.

Adabiyotlar roʻyxati

[1] M. Nikolo, "Superconductivity: A guide to alternating current susceptibility measurements and alternating current susceptometer design," *Am. J. Phys.*, vol. 63, no. 1, 1995, doi: 10.1119/1.17770.

[2] A. Coşkun, G. Akça, E. Taşarkuyu, Battal, and A. Ekicibil, "Structural, Magnetic, and Electrical Properties of Bi_{1.6}Pb_{0.4}Sr₂Ca₂Cu₃O_{10+x} Superconductor Prepared by Different Techniques," *J. Supercond. Nov. Magn.*, vol. 33, no. 11, 2020, doi: 10.1007/s10948-020-05618-8.

[3] J. G. Chigvinadze, S. M. Ashimov, J. V. Acrivos, and D. D. Gulamova, "Critical temperature of the superconducting transition of individual phases of multiphase bismuth cuprates after cooling in a magnetic field to a temperature of 77 K," *Low Temp. Phys.*, vol. 45, no. 4, 2019, doi: 10.1063/1.5093517.

МУЖАССАМЛАШГАН ҚУЁШ НУРЛАРИ ОҚИМИДА СН4 ВА СеО2 АСОСИДА ТЕРМОКИМЁВИЙ ЦИКЛ ОРҚАЛИ ВОДОРОД ОЛИШ

Ахмадов Х.С.

Кириш.

Хозирги вақтда бутун дунё бўйлаб истеъмол қилинадиган водороднинг 96 фоизи қазиб олинадиган ёқилғиларни ҳам ҳом ашё, ҳам енергия манбаи сифатида ишлатадиган жараёнларга тўғри келади. Н₂ ишлаб чиқаришнинг асосий жараёни табиий газнинг буғ реформацияси бўлиб, у дунё таъминотининг 48% ни ташкил қилади, нефт ва углероднинг қисман оксидланиши каби бошқа усуллар мос равишда 30% ва 18% ишлаб чиқаради. Н₂ ишлаб чиқаришнинг қолған 4% сув електролизига тўғри келади [1]. Термокимёвий сиклларга қизиқиш 1970-1980-йилларда кучайди. Ҳозирги вақтда водород асосан кимё саноати томонидан истеъмол қилинади, аммо узоқ муддатда, асосан, ривожланаётган бозорлар ҳисобига унинг талаби ўсиши кутилмоқда. Шунинг учун водородни екологик тоза усуллар билан ишлаб чиқариш долзарбдир [2]. Шу сабабли қайта тикланувчи енергия манбаларига асосланиб яни тўғридан тўғри мужассамлашган қуёш нурлари ёрдамида сувдан катализаторлар ёрдамида водород ажратиб олиш мақсад қилинган. Бунда оксидланиш-кайтарилиш реаксиясига асосланди ва қуйидаги термохимик реаксияни танлаб олдик (1-расм) ва реактор ичида бу жараён юз беради. Қуёш реакторини параметрларини ўргандик(2-rasm).

Асосий қисм.

Реактор дизайни учун зангламайдиган пўлатдан ясалган 304 маркаси ўрганилди ва ушбу материал учун иссиклик йўкотилиши ва унинг бошка термодинамик параметрлари аникланди. Хисоб-китоблар шуни кўрсатдики, реактор яратишда юкоридаги материалдан фойдаланиш максадга мувофикдир. Реакторнинг иссиклик ўтказувчанлиги учун к (Т) ҳароратга боғликликлари интерполяция ва екстраполяция усули билан аникланди. Ташки муҳит билан иссиклик алмашинуви жараёнлари ўрганилди. Реактор ичида содир бўладиган термокимёвий жараён ўрганилди, реакторнинг самарадорлиги аникланди. Бунинг учун металл оксиди СеО₂ танланган.

1-расм. CeO₂ / CeO_{2-δ} сиклига асосланган термокимёвий оксидланиш ва қайтарилиш реаксияларининг умумий кўриниши.

2-расм. Силиндрсимон реакторнинг кўриниши ва ўлчами [3]

Силиндрсимон реактор учун йўкотиладиган иссиклик окимини куйидагича хисоблаймиз.

$$q = \frac{2\pi (T_i - T_0)}{\frac{1}{k} \ln \frac{R_0}{Ri} + \frac{1}{hR_0}}$$

Бу ерда *q* - иссиклик окими, Вт; *k* - иссиклик ўтказувчанлиги, Вт / (м дег); Т_i - реактор ичидаги харорат, К; R₀ - реакторнинг ташки радиуси, мм; R_i- ички радиуси реактор, мм.

3-расм. Нусселт сони (Nu_D) ва Грасгофф сони (Gr_D) нинг реакторнинг ички хароратига боғликлиги.

5-расм. Иссиклик окими *q* нинг турли хароратларда реактор Ro ташки радиусига боғликликлари.

Хулоса: Реактор ясаш учун турли хил материаллар қараб чиқилди ва улар ичидан енг маъкули танлаб олинди. Хисоблашлар шуни кўрсатдики реактор ясаш учун нержавейка 304 фойдаланиш мақсадга мувофик деб топилди. Реакторнинг иссиклик маркадан утказувчанлик киймати нержавейка 304 маркаси учун к(Т) температурага боғликлиги аникланди, интерполация ва екстрополация килинди. Бунда иссиклик ўтказувчанлик 300-650 К хароратда 91,5-64.8 Вт/м²*К, 650-1400 К харорат оралиғида еса 64,8-85 Вт/м²*К гача ўзгаради. Иссиклик алмашиш киймати еса 686,5-962,3 Вт/м*К гача ўзгаришини аникладик. CH₄ ва CeO₂ термокимёвий цикллари ёрдамида водород ишлаб чикариш усуллари тахлил қилинган. Термокимёвий циклнинг ендотермик ва екзотермик жараёнлари учун иссиклик баланслари тенгламалари ўрганилди ва куйидагилар аникланди: 700 -1400 К харорат оралиғида реактор томонидан қуёш нурланишининг ютилиш самарадорлиги 99,6% дан 92,8% гача ўзгариб туради ва реакторга тушадиган иссиклик микдори бир мол учун 391кЖ дан 432 кЖгача ўзгаради. Куёш енергиясини ёкилгида сакланадиган кимёвий енергияга айлантириш самарадорлиги 3-10% гача бахоланади. СН₄ ва СеО₂ оркали ўтказиладиган термокимёвий реакция ендотермикдир, бу жараён учун оптимал харорат 1400 К, бунда водород, метан яхширок ажратилади ва водород конверсияси ортади. Пйтхонда харорат ва куёш доимийлиги ўртасидаги муносабатни, яъни юкоридаги параметрларни ўзгартирганда куёш реакторининг интенсивлиги, концентрацияси ва самарадорлигини аниклаш дастурини ишлаб чикди. Барча натижалар Пйтхонда дастурлаштирилган ва яратилган.Олинган натижага асосланиб, хулоса қилиш мумкинки, реактор деворининг қалинлиги ошиши билан истеъмол камаяди. Реакторни ясашда биз куйидаги натижаларга асосланиб оптимал қалинликни танлашимиз мумкин.

Адабиётлар рўйхати.

[1] Simon Koumi, Ngoha, Donatien Njomo. An overview of hydrogen gas production from solar energy Renewable and Sustainable Energy Reviews 16 (2012) 6782–6792.

[2] Villafán-Vidales, H.I.; Arancibia-Bulnes, C.A.; Riveros-Rosas, D.; Romero-Paredes, H.; Estrada, C.A. An overview of the solar thermochemical processes for hydrogen and syngas production: Reactors, and facilities. Renew. Sustain. Energy Rev. 2017, 75, 894–908.

[3] Shaomeng Dai, Zheshao Chang, Jasurjon S. Akhatov, and Xin Li. Numerical study on the performance of a two coal inlets solar CO₂ coal gasification vortex reactor. Solar Energy 188 (2019) 573–585.

PARABOLIK QUYOSH KONSENTRATORI PARAMETRINI ANIQLASH

Arziyev Zavqidin Djumamurod o'g'li

Kirish

Butun dunyo bo'ylab energiyaga bo'lgan talab oshib bormoqda. Global o'sish tendensiyasi iqtisodiyotni rivojlantirish uchun elektr energiyasiga talab, eksponensial ravishda o'sib borishini ko'rsatmoqda. Elektr tokini ishlab chiqarishda, atmosferaga korbanat angidrid (CO₂), oltingugurt dioksidi (SO₂) va azot oksidi (NOx) ajralishi natijasida hosil bo'ladigan parnik effekti, yer sharida jiddiy ekologik muammolarning kelib chiqishiga sabab bo'lmoqda. Bugungi kunga kelib havoning ifloslanishi, cho'llanish, qurg'oqchilik va turli xil tabiat falokatlarining sababchisi aynan tabiiy resurslardan tinimsiz foydalanishimiz oqibati o'laroq namoyon bo'lmoqda.

Konsentratorlar parametrlarini aniqlash metodlari

a) *To'g'ridan-to'g'ri aniqlash metodi*. Bu usulda nur tushish yuzasini skanerlash uchun lazer nuridan foydalaniladi [1]. Yuzadan o'lchangan oqim, uzatish samaradorligi xaritasini chizish imkonini beradi. U konsentratordagi defekt va yuza notekisliklari haqida ma'lumot beradi.

b) *Teskari metod*. Bu usulda nur tushish nuqtasini yoritilganligini o'lchash orqali konsentrator parametri aniqlanadi. Bu usul yordamida tez va oddiy apparatlar yordamida o'lchovlarni amalga oshirish mumkin. Bu usul konsentratorning effektivligini aniqlash uchun burchak bilan bog'liq bo'lgan muqobil variant hisoblanadi [2].

Parabolik konsentratorning parametrlarini aniqlash formulalari

Parabolik konsentratorning konsentratsiya koeffitsiyenti quyidagi formula bilan aniqlanadi [3]:

$$K = \frac{q_{fok}}{q_{quy}} \tag{1}$$

Bu yerda q_{fok} -konsentratorning fokal tekisligiga yig'ilgan nurlanish, q_{quy} -Quyoshning nurlanishi. q_{fok} quyidagi formula orqali topiladi [4]:

$$q_{fok} = \frac{Q_2 - Q_1}{(\tau_2 - \tau_1) \cdot S_q}$$

Bu yerda $Q_2 - Q_1$, $\tau_2 - \tau_1$ vaqt intervalidagi energiya farqi. S_q -fokal tekislikda qabul qilgich yuzasi. Konsentratordan kelayotgan nurlanishni bir nuqtaga yig'ib suyuqlikni qizdirib olingan issiqlik

(4)

 $\Delta Q = C_{suy} m_{suy} (T_2 - T_1)$ (3) Suyuqlik qizdirishdagi issiqlik quvvati [5]:

$$P = \frac{\Delta Q}{\tau_2 - \tau_1}$$

Konsentratorning foydali ish koeffitsiyenti

$$\eta_k = \frac{P}{q_{quy} S_k} \tag{5}$$

Bu yerda S_k – konsentrator yuzasi

Tajriba natijalari

Tajriba o'tkazish uchun 1-rasmda ko'rsatilgan parabolik konsentratordan va quyidagi

(2)

1-rasm. Parabolik tipdagi quyosh

qurilmalardan foydalanildi:1) Parabolik konsentrator (S_k =0.446 m²), 2)SolSensor-200, quyosh intensivligini qayd qilish uchun, 3) ATE-9380-Termometr, 4) 3 ta termopara (Cr—Ni, Ni—Al), 5) Temir slindr shakldagi m=488 g, S_q =15.9 sm², 6) Noutbuk (natijalarni qayd qilish uchun) va 7) Sekundomer.

Konsetrator yuzasiga tik tushayotgan quyosh radiatsiyasi har yarim soatda SolSensor apparati bilan o'lchandi (2.a rasm) 9 soat davomidagi quyosh radiatsiyasining o'rtacha qiymati 927 W/m^2 ni tashkil etdi, havo temperaturasi va fokal tekislikdagi temperatura termoparalar yordamida termometr orqali o'lchandi (2.b-rasm).

Konsentratorning konsetratsiya koeffitsiyentini aniqlash uchun uning fokal tekisligiga temir joylashtirildi va u ma'lum vaqt qizdirildi, va natijada temperaturalar farqi o'lchanib, quyidagi (3) ifoda orqali energiyalar farqi hisoblandi:

$$\Delta Q = C_t m_t (T_2 - T_1) = 449 \frac{J}{kg \cdot K} \cdot 0.488 \, kg \cdot (555 \, K - 299.1 \, K) = 56 \cdot 10^3 \, J$$

(4) ifodadan foydalanib quvvat hisoblandi:

$$P = \frac{\Delta Q}{\tau_2 - \tau_1} = \frac{56 \cdot 10^3 \, J}{852 \, s} = 66 \, W$$

2-rasm. a) Intensivlikning vaqt davomida o'zgarishi, b) Konsentrator fokal tekisligi temperaturasining vaqt bo'vicha o'zgarishi

Olingan quvvatni unda turgan qabul qiluvchi jism temirning yuzasiga bo'lib fokal tekislikdagi radiatsiyani topamiz:

$$q_{fok} = \frac{P}{S_a} = \frac{66 W}{15.9 \cdot 10^{-4} m^2} = 41.5 \ kW/m^2$$

bu qiymatni (1) ifodaga qo'yib konsentratiya koeffitsiyentining qiymatini topamiz:

$$K = \frac{q_{fok}}{q_{quy}} = \frac{41.5 \ kW/m^2}{927 \ W/m^2} = 44.8$$

(5) ifoda yordamida qurilmaning foydali ish koeffitsiyenti topildi:

$$\eta_k = \frac{P}{q_{quy}S_k} = \frac{66W}{927\frac{W}{m^2} \cdot 0.446m^2} = 0.16$$

Qaytaruvchi yuzaning sifati pastligi, qabul qilgich atrof muhitdan izolyatsiya qilinmaganligi uchun quyosh konsentratorining FIKi $\eta_k = 16$ % i tashkil qilmoqda.

Foydalanilgan adabiyotlar

[1] A.Parretta, A.Antonini, M. Stefancich, V. Franceschini, G. Martinelli, M. Armani, "Characterization of CPC solar concentrators by a laser method," in Optical Modeling and Measurements for Solar Energy Systems, ed. by Daryl R. Myers, Proc. SPIE Vol. 6652, pp. 665207 1-12.

[2] A. Parretta, A. Antonini, M. Stefancich, G. Martinelli, M. Armani, "Inverse illumination method for characterization of CPC concentrators," in Optical Modeling and Measurements for Solar Energy Systems, ed. by Daryl R. Myers, Proc. of SPIE Vol. 6652, pp. 665205 1-12.

[3] Грилихес В.А., Матвеев В.М., Полуектов В.П.. Солнечные высокотемпературные источники тепла для космических аппаратов. — М.: Машиностроение, 1975. — 248 с.

[4] Гудрамович В.С., Гайдученко А.П., Коваленко А.И.. Технологии изготовления устройств антенно-волновой техники и солнечной энергетики, основанные на методе электролитического формования // Космічна наука и технология. — 2001. — 7, № 2/3. — С. 66—77.

[5] Клычев Ш.И., Мухитдинов М.М., Бахрамов С.А.. Методика расчёта системы параболический концентратор трубчатый приёмник солнечных теплоэнергетических установок // Гелиотехника. — 2004. — № 4. — С. 50—55.

Assessment of the influence of the parameters and properties of phase change materials on the thermal performance of buildings

Akbar Halimov

Physical-Technical Institute, Uzbekistan Academy of Sciences, Chingiz Aytmatov 2B, 100084, Tashkent, Uzbekistan. akbar.halimov@rwth-aachen.de

Abstract

This study presents the results of the impact assessment of the parameters and properties of phase change materials (PCMs) on the heating and cooling loads in buildings integrating PCM layers by the orthogonal experimental design (OED) method. The impact of various PCM layer factors in four climates was assessed. These factors were the thickness, melting temperature, latent heat of fusion, density, specific heat capacity, and thermal conductivity. The results revealed that varying the density, latent heat of fusion, and thickness of PCMs in lightweight buildings highly impacted thermal load reduction, whereas the variation in thermal conductivity had a slight impact.

Keywords: phase change materials; heating and cooling loads; orthogonal experimental design; ASHRAE Standard 140; lightweight buildings.

Introduction

Incorporation of PCM in building walls requires a parametric study of PCMs and the whole system to optimize design and material selection [1,2]. A parametric study using building performance simulation (BPS) tools could help designers determine the optimal solution regarding considered criteria. However, performing such a parametric study is rather complicated and time consuming because it requires a large number of simulation runs. Additionally, currently, only a few BPS tools embed comprehensively verified and validated PCM models [1]. Moreover, there are many parameters or factors to be considered, such as building thermal insulation, types and locations of various PCMs, building orientation, glazed surface area, window type, envelope airtightness, building thermal inertia, efficiency of HVAC equipment and systems, and renewable energy sources. Furthermore, interactions exist among certain parameters, which are not easy to evaluate with a single parametric study [3].

Therefore, this paper aims to establish a methodology that simplifies parametric studies for PCM integration in building envelopes. The methodology is based on the orthogonal experimental design (OED) method [4,5], which is a statistical widely used method in industry for performing parametric studies by reducing the required number of experiments [5].

Methodology

To assess the influence of the PCM layer parameters and properties on the thermal performance of buildings, we employed the OED method. This method selects representative cases from the full FED such that these cases are uniformly distributed within the test range and thus can represent the overall situation, which is highly efficient for arranging multifactor experiments with optimal combination levels. For the use cases, we selected building models—cases 600 and 650 from ASHRAE Standard 140 [6]. These building models were selected for their simplicity and because they are well-referenced and well-understood buildings that have been simulated with several BPS tools. Moreover, our simulations were performed with modified versions of the existing and validated Modelica-based building models, which are available in Modelica library AixLib [7].

Results and discussion

3.1. Annual heating load

Table 4 lists the specific annual heating loads per unit of the net floor area of the base case 600 in the different climates. In the modified case 600, the specific annual heating loads are given for PCMs with quasi-ideal properties.

Climate	Specifi heating kWh/m Basic	c annual g energy in $h^2 \cdot a$ Optimal test	Optimal test	Optimal combination	Order of factor influence levels
Ι	103.5 6	47.06	$\begin{array}{c} A_4B_2C_5D_3E_1\\ F_4\end{array}$	$\begin{array}{c} A_5B_2C_5D_5E_1\\ F_4\end{array}$	D>C>A>B>E >F
II	89.85	66.15	$\begin{array}{l} A_5B_1C_5D_4E_3\\ F_2\end{array}$	$\begin{array}{l} A_5B_1C_5D_5E_3\\ F_2\end{array}$	A>D>C>B>F >E
III	58.10	34.85	$\begin{array}{l} A_5B_1C_5D_4E_3\\ F_2\end{array}$	$\begin{array}{l} A_5B_1C_5D_5E_3\\ F_2\end{array}$	D>A>C>B>F >E
IV	6.625	0.117	$\begin{array}{l} A_4B_2C_5D_3E_1\\ F_4\end{array}$	$\begin{array}{l} A_5B_2C_5D_5E_1\\ F_4\end{array}$	A>D>B>C>F >E

Table 4. Specific annual heating loads for case 600 in the four climates.

3.2. Annual cooling load

Table 5 lists the annual cooling loads in the basic (without the PCM layer) and modified cases 600 and 650 in the four climates. In the modified cases, the annual cooling loads are given for PCMs with quasi-ideal properties.

Table 5.	Specific	annual	cooling	loads i	n cases	600 and	650.
	-		-				

	Specific annual cooling load in kWh/m ² ·a							
Climate	Case 60	00		Case 650				
	Basic	Optimal test	Optimal combination	Basic	Optimal test	Optimal combination		
Ι	140.3 1	91.16	$\begin{array}{c} A_5B_2C_5D_5E\\ {}_1F_1\end{array}$	109.0 4	44.27	$\begin{array}{c} A_5B_1C_5D_5E_1F\\ {}_1\end{array}$		
II	60.92	39.29	$\begin{array}{c} A_5B_2C_5D_5E\\ {}_1F_1\end{array}$	46.96	21.21	$\begin{array}{c} A_5B_1C_5D_5E_1F\\ {}_1\end{array}$		
III	165.1 2	136.33	$\begin{array}{c} A_5B_2C_5D_5E\\ {}_1F_1\end{array}$	127.3 5	80.42	$\begin{array}{c} A_5B_1C_5D_5E_1F\\ {}_1\end{array}$		
IV	189.9 8	168.31	$\begin{array}{l} A_5B_4C_5D_5E\\ _3F_1\end{array}$	150.9 4	110.37	$\begin{array}{c} A_5B_4C_5D_5E_1F\\ {}_1\end{array}$		

Conclusions

This study presents the results of the impact assessment of the parameters and properties of PCMs on the heating and cooling loads of buildings integrating PCM layers using the OED method. For

lightweight buildings, the results indicated that varying the density, latent heat of fusion, and thickness of the PCMs had a high impact on the reduction of the annual heating and cooling loads regardless of the ventilation mode. However, from case to case and climate to climate, the level of the thickness, latent heat of fusion, and density attained the maximum value, whereas the level of the thermal conductivity and specific heat capacity attained the minimum value. In future optimization problems, these parameters may be excluded except for the thickness, for which the penalty function applies. The general thermodynamic pattern of the results indicates that lightweight buildings require heat storage as much as possible while preventing heat exchange with the environment.

Acknowledgement

The author acknowledges no financial support provided by any research grants.

References

References

[1] P. C. Tabares-Velasco, C. Christensen, M. Bianchi, Verification and validation of EnergyPlus phase change material model for opaque wall assemblies, Building and Environment 54 (2012) 186 - 196.

[2] Y. Dutil, D. Rousse, S. Lassue, L. Zalewski, A. Joulin, J. Virgone, F. Kuznik, K. Johannes, J.-P. Dumas, J.-P. Bdcarrats, A. Castell, L. F. Cabeza, Modeling phase change materials behavior in building applications: Comments on material characterization and model validation, Renewable Energy 61 (2014) 132 - 135, World Renewable Energy Congress Sweden, 813 May, 2011, Linköping, Sweden.

[3] F. Chlela, A. Husaunndee, C. Inard, P Riederer, A new methodology for the design of low energy buildings, Energy and Buildings, Volume 41 (2009), 982-990.

[4] Taguchi, Genichi. 1987. System of experimental design. New York: UNIPUB, Kraus International Publications.

[5] Roy, Ranjit 2010. A primer on the Taguchi method. Society of Manufacturing Engineers.

[6] ASHRAE Standard 140. Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs 2017, ANSI/ASHRAE.

[7] A. Constantin, R. Streblow and D. Müller. The Modelica HouseModels library: Presentation and evaluation of a room model with the ASHRAE Standard 140, Proceedings of the 10th International Modelica Conference; 2014; March 10-12; Lund; Sweden, 96, Linköping University Electronic Press:293-299.

МАЖБУРИЙ КОНВЕКЦИЯ ОСТИДА ТЮ2 ВА СОО АСОСЛИ НАНОСУЮКЛИКЛАРДАГИ ИССИКЛИК УЗАТИШНИ АНИКЛАШ УЧУН МЎЛЖАЛЛАНГАН АВТОМАТЛАШТИРИЛГАН СТЕНД ЯРАТИШ

Жураев Тухтамурод Ислом ўғли

1. Кириш

Самарадорлиги хамда экологик хавфсизлиги жихатдан куёш энергиясини бошка турдаги энергияга айлантириш қайта тикланувчи энергия манбаларидан фойдаланишнинг мақбул усулларидан хисобланади, хусусан куёш иссиклик коллкторларидан фойдаланиш буни яққол намунасидир. Шунинг билан бир қаторда барча иссиқлик тизимларида кечгани каби қуёш иссиқлик тизимларида ҳам кечадиган иссиқлик интенсификацияси муаммоси ҳам учраб туради. Айнан шу каби муаммоларни ҳал қилиш мақсадида янги турдаги юқори иссиклик ўтказувчанликка эга наносуюклик атамали [1] иссиклик ташувчилардан саноатда, электроникада, бир ва икки контурли куёш исиклик тизимларида фойдаланилади [2-3]. Шу билан бир қаторда наносуюқликларда кечадиган иссиқлик жараёнларини тадбиқ қилиш учун наносуюқликларнинг иссиқлик физикавий хусусиятларини аниқлаш, наносуюқлик таркибидаги нанозаррачалар концентрациясини харорат ўзгаришига боғлиқлигини бахолаш мухим кўрсаткичлардан саналади [4-5]. Бундан ташқари наносуюқликларни тайёрлаш усуллари хамда уларда кечадиган седиментация ва аггломерация жараёнлари хам иссиклик узатувчанлигига сезиларли даражада таъсир килувчи омиллардан саналади [6-7], масалан ултратувушли аралаштириш частотаси 20 кГц дан кичик булса седиментация жараёнига қанақа таъсир қилиши ёки нанозаррачалар концентрацияси 5% дан ошганда қандай ўзгаришлар кузатилиши ёки "Two step method" метод ўрнига "One step method" методдан фойдаланиш суспензияда содир бўладиган аггломерация жараёнини вужудга келиши ва бошқалар. Наносуюқликларни иссиқлик физикавий хусусиятларини аниқлаш хамда наносуюкликлардаги иссиклик узатишни тадбик килиш максадида кўпгина [8-9] тадкикотлар олиб борилган. Айни шу максадда куйида автоматлаштирилган тизми таклиф қилинади.

2. Методолигия

Наносуюқликлардаги иссиқлик узатишни тадқиқ қилишдан аввал материалларни танлаш ва суспензия тайёрлаш ва суспензиядаги кечадиган седиментация ва бошқа жараёнларни кузатилиши муҳимдир. Шу мақсадда "Two step method" усулидан фойдаланиб наносуюқлик тайёрлаш учун TiO₂ ва CuO нанозаррачалари танлаб олинди ва ултратовушли аралаштириш ёрдамида суспензия тайёрланди. 1-а,б,с расмлар.

а) СиО ва ТіО2 асосли нанозаррчалар

б) GT-Sonic D3 да соникация жараёни

с) СиО ва ТіО₂ нанозаррачалар асосли наносуюқлик

1-расм. а,б,с. ТіО₂ ва CuO асосли наносуюклик, соникация давомийлиги 12 мин соникация частотаси 40кГц ва хажмий концентрация 1%.

Тайёрланган наносуюқликлар билан бирга тажрибалар олиб бориш мақсадида қуйидагича принципиал схема билан берилган автоматлаштирилган тизим таклиф қилинади, 2-расм.

2-расм. 1-полимер материал асосидаги куёш коллектори; 2-сарф датчиги; 3-созланувчи клапан; 4-циркуляцион насос; 5- бошкарув блоки; 6,8,9-харорат датчиклари; 7-иссик сув учун бак аккумулятори;

Бундан ташқари автоматлаштирилган системанинг САD модели ҳам яратилган ҳамда Solidworks пакети ёрдамида дастлабки симуляцион тадқиқотлар ҳам олиб борилган 3-а,б,с расм. Автоматлаштрилган система автоматлаштириш қоидалари ва босқичлари асосида тузилган ва тизимни назорат қилиб, ростлаб туриш мақсадида Arduino платформасидаги микроконтроллерлардан ва ўлчов датчикларидан фойдаланилган.

3-расм.а) САD модель, б) тажриба намунасининг кўриниши, с) дастлабки симуляцион тадкикот натижаси.

Куйида автоматлаштирилган тизмини бошқариш учун DipTrace да яратилган бошқарув блоки схемаси келтирилган 4-расм.

Схема қуйидаги компоненталардан ташкил топган:

-ARD2 Arduino Uno микропросессори

- PCF8574Т микропросессор асосли i2с модуль
- ULN2003А қадамли моторни ишлатиш учун универсал драйвер
- MOTOR_STEPPER_6- униполяр қадамли мотор
- TUXGR_16X2_R2- ЛСД 1602А дисплей
- DS1820- рақамли температура датчиги
- А3122EU- Холл эффект датчиги (сарфни ўлчаш учун)
- -10 кОм хамда 4.7кОм резисторлар хамда Диод ва конденсаторлар

4-расм. Автоматлаштирилган тизмини бошқарув блогининг интеграл схемаси кўриниши.3. Хулоса

Юқоридаги тадқиқотни олиб бориб қуйидагича хулосалар олиш мумкин.

-таклиф килинаётган қуёш коллектори нафақат бир контурли ва кўн контурли системаларда ишлатилиш учун мос хам -автоматлаштирилган система наносуюқликларни нафақат еркин балки мажбурий оқим режимини конвекцияда хам оптимал топиш имконини беради

-таклиф килинган автоматлаштирилган система замонавий лойихалаш программаларидан (Arduino Platform) фойдаланган яратилган холда -автоматлаштирилган система ишончли хамда керакли катталикларни бевосита йиғиш имкони мавжуд.

4. Адабиётлар рўйхати

[1] S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, ASMEPublications-Fed 231 (1995) 99–105.

[2] Saleh A.M., Modeling of Flate-Plate Solar Collector Operation in Transient States, MsE Thesis, Purdue University, Fort Wayne ,Indiana ,2012.

[3] Sagadevan S., A review of role of Nanofluids for solar energy applications, American Journal of Nano Research and Applications, Vol. 3, No.3, p53-61.2015.

[4] Bachock N. and Pop I., Flow and Heat transfer characteristics on a Moving Plate in a Nanofluid, International Journal of Heat and Mass Transfer.,Vol.55,p 642-648,2012.

[5] Kakac S. and Pramuan J., Review of Convective Heat Transfer Enhancement with Nanofluids, international Journal of Heat Transfer, Vol 52, p.3187-3196, 2009.

[6] Choi, S.U.S.; Eastman, J.A. Enhanced Heat Transfer Using Nanofluids. USA Patent 6,221,275, 24 April 2001.

[7] Leena, M.; Srinivasan, S. Synthesis and ultrasonic investigations of titanium oxide nanofluids. J. Mol. Liq. 2015, 206, 103–109. <u>https://doi.org/10.1016/j.molliq.2015.02.001</u>.

[8] Swati Singh, Gurpreet Singh, Amit Singla., Experimental Studies on Heat Transfer Performance of Double Pipe Heat Exchanger with using Baffles and Nanofluids // Indian Journal of Science and Technology, Vol 9(40), DOI: 10.17485/ijst/2016/v9i40/101486, October 2016.

[9] W. Kang, Y. Shin, H. Cho., Economic analysis of Flat-Plate and U-Tube solar collectors using an Al2O3 nanofluid // Energies., vol 10. (2017).Pp 1911-1926.

O'zR FA «Fizika-Quyosh» IIChB Fizika-texnika instituti

Adres: Chingiz Aytmatov 2B, 100084 Toshkent. Tel: +998-71-2331271; Fax: +998-71-2354291 E-mail: <u>ftikans@uzsci.net</u>, Web: <u>www.fti.uz</u>

> Physical-Technical Institute SPA "Physics-Sun" UzAS

3 CHAS

Address: 2B, Chingiz Aytmatov Str., 100084 Tashkent. Tel: +998-71-2331271; Fax: +998-71-2354291 E-mail: <u>ftikans@uzsci.net</u>, Web: <u>www.fti.uz</u>