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Abstract. In this paper we develop a collective coordinate approach for the dynamics of two
solitons, governed by the nonlocal Gross-Pitaevskii equation (GPE). The model adequately
describes both the small amplitude and large amplitude dynamics of soliton bound states
(also known as soliton molecules), including the dissociation phenomena. Detailed comparison
between theoretical predictions and numerical simulations of the governing GPE is presented.

1. Introduction

Solitons as localized nonlinear waves exhibit many interesting properties [1]. In particular,
they can form stable bound states known as soliton molecules (SM). For the first time SM were
experimentally observed in dispersion - managed optical fibers [2]. These soliton compounds may
find important applications in fiber optic communication systems to enhance their data carrying
capacity [3]. The existence of two-soliton bound states in Bose - Einstein condensates (BEC)
with contact atomic interactions and some dynamic phenomena involving SM were reported
in [4, 5].

As the solitons are neutral objects, interactions between them in homogeneous optical fibers
and ordinary BEC occur indirectly, through modification of the medium properties. Essential
point to be stressed here is that, solitons in media with uniform dispersion and local nonlinearity
can either attract or repel each other, depending on the phase difference between individual
solitons. The interaction between solitons in uniform media occurs only when their waveforms
appreciably overlap. In contrast to this, in nonlocal media such as dipolar BEC, solitons can
interact even though their waveforms do not overlap.

True molecular type of interaction, when two solitons attract each other at long distances
and repel when they are close, was found to exist in dipolar quantum gases. Consequently,
at some fixed separation between solitons attraction (due to dipolar forces) and repulsion (due
to anti-phase configuration) can balance each other, and this corresponds to stationary state
of the molecule. Small displacement of solitons from their stationary positions gives rise to
oscillations near the stationary state. In previous works [6, 7] a variational approach (VA)
with Gauss-Hermite trial function was employed to find the waveform of a two-soliton molecule
and stationary separation between solitons. Despite very good agreement between the VA and
numerical simulations of the Gross-Pitaevskii equation (GPE) for small amplitude dynamics, the
model [6, 7] becomes inadequate for large amplitude dynamics of the molecule. In particular, it
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cannot describe the dissociation phenomena, when the molecule breaks into individual solitons
under external forcing or parametric perturbations.

This paper is aimed at developing the collective coordinate approach (CCA) for the dynamics
of two-soliton molecules, which can properly describe both the small amplitude and large
amplitude oscillations of the molecule, including the dissociation phenomena. In similar setting
the CCA for two solitons, governed by the standard nonlinear Schrödinger equation (NLSE),
was introduced in Ref. [8]. However, as we mentioned above, standard NLSE does not support
stable SM’s with finite binding energy. In this work we extend the CCA [8] to soliton bound
states in nonlocal GPE and find novel phenomena, not observed in the NLSE. In subsequent
sections we present the mathematical model and corresponding numerical simulations.

2. Theory and numerical simulations

The dynamics of a quasi-one dimensional dipolar BEC is governed by the nonlocal GPE, which
is written in normalized units as follows
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∫
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where ψ(x, t) is the mean-field wave function of the condensate, g is the coefficient, responsible for
the long - range dipolar atomic interactions. In experiments the strength of dipolar interactions
can be made time-dependent g → g(t) by means of external polarizing magnetic fields [9]. R(x)
is the response function, which characterizes the degree of non-locality of the medium. Below
we consider the simplest Gaussian form R(x) = exp(−x2/2w2)/(

√
2πw) which is sufficient for

qualitative understanding of the properties of dipolar BEC. Also, for simplicity we excluded the
contact interactions term∼ q |ψ|2 ψ from the governing equation. This is justified for condensates
of atomic species having large natural magnetic dipole moment, such as 52Cr (d = 6µB),

164Dy
(d = 10µB) and

168Er (d = 7µB), with µB being the Bohr magneton.
It can be verified, that equation (1) is obtained from the following Lagrangian density
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To develop the collective coordinate approach, we consider two anti-phase Gaussian functions
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The time-dependent parameters of individual solitons A(t), a(t), ξ(t), v(t), ϕ(t), meaning the
amplitude, width, center-of-mass position, velocity and phase, respectively, are considered as
collective coordinates. The averaged Lagrangian L =

∫

∞
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Ldx is evaluated using Eq. (3)
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In deriving the last expression for L we assumed the parameter a to be time-independent, as in
Ref. [8]. The norm of the molecule is reduced due to destructive interference of two anti-phase
solitons placed at a distance 2ξ from each other: Nm =

∫

∞

−∞
|ψ|2dx = 2A2a

√
π[1−exp(−ξ2/a2)].

Obviously, when the solitons are far apart (ξ ≫ a), the interference is negligible, and the norm
of the molecule is twice of the single soliton’s norm Nm = 2N = 2A2a

√
π.

As we have mentioned above, the stationary waveform and small amplitude dynamics of SM
is well described by VA [6,7]. For a given set of input parameters w, g0, Nm, the width am of a
SM can be evaluated from the algebraic equation [6]

a4m(a4m + 4w4)(a2m + w2)−7/2 − 4
√
2π/(g0Nm) = 0. (5)

This equation describes the bond length of a two-soliton molecule ∆ = 4am/
√
π as a

function of its norm Nm. The wave function for SM ψm = Amx exp(−x2/2a2m) with a norm
Nm = A2

m a3m
√
π/2, used in [6], can be represented by two anti-phase Gaussians (3) with

parameters

A =
[

2Nm/(am
√
π e)

]1/2
, a = am e/4, ξ = am, where e = 2.71828... (6)

In the left panel of figure 1 we compare the shape of a two-soliton molecule ψm(x) found
from equation(5) and two anti-phase Gaussians with parameters according to equation(6).
Numerically “exact” waveform constructed using the Nijhof’s method [10], is also presented.
Apparently, the results of VA and Nijhof’s method almost coincide.
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Figure 1. Left panel: The shape of a SM (green solid line) found from equation (5) using w = 5,
g0 = 20, Nm = 4, compared with two anti-phase Gaussians (3) with a = 1.032, A = 1.046,
ξ = 1.519, v = 0, ϕ = 0 (red dashed line). Numerically “exact” waveform is constructed by
Nijhof’s method (blue dashed line). Right panels: Oscillations of solitons when they are set
in motion in opposite directions with initial velocity (from left to right): v = 0, v = 0.2 and
v = 0.5, according to GPE (red solid line) and CCA (blue dashed line).

Once the averaged Lagrangian (4) is available and the stationary state of the SM is found,
its dynamics under parametric perturbations, such as time dependent strength of dipolar
interactions g(t), can be explored using the coupled system of Euler-Lagrange equations for
collective coordinates η → A(t), ξ(t), v(t), ϕ(t)

d

dt

∂L

∂ηt
− ∂L

∂η
= 0. (7)



4

1234567890

Frontiers in Theoretical and Applied Physics/UAE 2017 (FTAPS 2017) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 869 (2017) 012014  doi :10.1088/1742-6596/869/1/012014

In the right panels of figure 1 we show the dynamics of the molecule when the solitons are set
in motion in opposite directions with some initial velocity. In the unperturbed molecule (v = 0)
the solitons stay motionless at their equilibrium positions. If the molecule is excited due to
initial velocity (v > 0), the solitons start to oscillate. This is the evidence of the molecular type
of interaction between solitons in dipolar BEC. Another important aspect to be stressed here is
that, collisions between dipolar solitons are strongly inelastic, which shows up as a phase shift
after each collision.

In figure 2 we present typical examples of the dynamics of a two-soliton molecule under
periodically varying strength of dipolar interactions. As can be seen from this figure, the
developed model adequately describes the oscillations of solitons due to parametric perturbation,
and quite accurately predicts the time instance, at which the molecule dissociates.

Figure 2. Dynamics of a two-soliton molecule under periodically varying strength of dipolar
interactions g(t) = g0 (1 + ε sin(ωt)) according to CCA (red dashed line) and GPE (density
plot |ψ|2). Left panel: The solitons vibrate under weak perturbation ε = 0.1 with frequency
ω = 0.756. Right panel: At stronger perturbation ε = 0.63 with the same frequency the molecule
decays into freely moving solitons at t ∼ 30. The parameter values are the same as in figure 1.

3. Conclusions

We have developed a collective coordinate approach for the dynamics of two bright solitons,
moving and colliding in dipolar quantum gases. The advantage of the present model over
previously reported ones is that, it can adequately describe both the small amplitude and
large amplitude dynamics of soliton molecules, including the dissociation phenomena, when
the molecule decays into separate freely moving solitons. Theoretical predictions are compared
with numerical simulations of the governing GPE, and good agreement between them is found.
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