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The existence of stationary wave packets in the nonlinear Kerr media with an imaginary harmonic 
potential and a linear gain is investigated. By employing a variational approach the existence of stable 
bright solitons is shown for the case of a defocusing nonlinearity. In focusing nonlinear media, the 
bright solitons have been shown to be unstable. The predictions of variational approach are confirmed by 
numerical simulations of the full modified NLS equation. The predicted stationary localized wave packets 
can be observed in a quasi-one-dimensional BEC with an imaginary optical potential and atoms feeding.
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1. Introduction

The problem of nonlinear wave processes in media with non-
Hermitian (mainly a parity-time (PT) symmetric) parameters like 
potentials, nonlinearities etc. attracted a great attention in recent 
time [1,2].

Existence and stability of solitons in PT-symmetric systems have 
been investigated in works [3–6]. Solitons in non-PT symmetric 
complex potentials have been recently studied in [7–11]. Dynam-
ics of solitons in real potentials with inhomogeneous gain has been 
considered in [12–14].

Very interesting result has been obtained in [15], where evo-
lution of a wave packet under action of an imaginary quadratic 
potential (non PT-symmetric) was considered. Authors found an 
exact solution of the Schrödinger equation with such potential. The 
width of this packet asymptotically with time tends to the station-
ary value. However such a packet is decaying and its amplitude is 
going to zero in time. The experimental work with atomic beams 
in such potential demonstrates the existence of a “nonspreading” 
wave packet [16].

In the case of BEC affect of atomic interactions is important. It 
is interesting to investigate effect of interaction between atoms and 
gain on the existence of stationary “nonspreading” wave packets.

* Corresponding author.
E-mail address: ravil @uzsci .net (R.M. Galimzyanov).
https://doi.org/10.1016/j.physleta.2018.04.051
0375-9601/© 2018 Published by Elsevier B.V.
Here for this purpose we consider a theoretical model based on 
the NLS equation with cubic nonlinearity, gain and imaginary har-
monic potential. This problem has been of a general interest since 
it described nonlinear waves in optical and cold atomic systems. 
We use the Gross–Pitaevskii equation in description of the wave 
function of a quasi one dimensional BEC with imaginary trap and 
gain of the atoms number. In the case of the nonlinear optics, the 
media with the Kerr nonlinearity and spatially inhomogeneous dis-
tribution of the linear part of the imaginary refraction index and 
linear amplification can be considered as such a system.

Important finding (see below) is that in such imaginary poten-
tial it is possible the existence of stable bright matter wave solitons 
for the case of a repulsive interaction (defocusing mean field non-
linearity), while in the case of attractive interactions (focusing non-
linearity) the bright solitons are unstable. Some analogues were 
found earlier, namely the existence of nonlinear localized modes in 
a nonlinear medium with non-Hermitian harmonic potential [17], 
a quasi-stationary bright solitons in the 2D Kerr nonlinear me-
dia with quintic dissipation [18]. Also, it should be noted that the 
existence of a bright soliton solution in the slab waveguide with 
defocusing nonlinearity, absorbing boundary and localized nonlin-
ear gain in the core has been recently shown in work [19]. Here 
the authors employed the possibility to manipulate the sign of the 
effective nonlinearity in such systems, using properties of the spec-
trum of a linear non-Hermitian system.

The paper is organized as follows. In section 2 we give a mathe-
matical model and get governing Gross–Pitaevskii (GP) equation to 
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describe the dynamics of the system. Then we formulate a varia-
tional approach (VA) corresponding to our governing equation and 
describing the behavior of parameters of the wave packet in time. 
In section 4 and further we present results of numerical simula-
tions and make some conclusions.

2. The model

As the model, we will consider matter waves in a quasi-one-
dimensional BEC with the atoms feeding, loaded in the imaginary 
quadratic potential. Such configuration can be realized by the con-
densation of two-level atoms in the laser field and strong trans-
verse confinement trap potential. The interaction between resonant 
laser field and the ground state of the atom can be described by a 
complex optical potential [20–22]

Vopt = 1

h̄

d2
e E2(X)

� + iγ0/2
, (1)

where E(X) is the electric field, de is the dipole moment of the 
atom, � is the detuning of the laser beam frequency from the tran-
sition frequency between levels, γ0 is the loss rate from the excited 
state to the noninteracting case. This potential becomes imaginary 
for � = 0.

Corresponding Gross–Pitaevskii equation describing this system 
is:

ih̄ψT + h̄2

2M
ψX X + iMα2 ω2

0

2
X2ψ − g1D |ψ |2ψ − iρψ = 0, (2)

where ρ is the atoms feeding rate parameter, ω0 is a parameter of 
the optical potential, g1D = 2h̄ω⊥aS , ω⊥ is the transverse trap fre-
quency, aS is the S-wave atomic scattering length, aS > 0 (aS < 0)

corresponds to BEC with repulsive (attractive) interaction between 
atoms respectively. Introducing the dimensionless variables

t = Tω0

2
, x = X

l
, l =

√
h̄

Mω0
, δ = 2ρ

h̄ω0
, u = √

2|aS |ψ,

γ = aS/|aS |,
we get the equation in the form of a modified nonlinear Schröding-
er equation:

iut + uxx − γ |u|2u = (−iα2x2 + iδ)u, (3)

where factors α and δ are the imaginary harmonic potential 
strength and gain correspondingly. This equation also describes 
the propagation of electromagnetic waves in a nonlinear 1D Kerr 
medium with gain and a harmonic modulation of the imaginary 
part of a linear refraction index [23].

The linear case without gain (γ = δ = 0) was considered in 
work [15]. The exact solution which was named as “nonspread-
ing wave packet” has the form

u(x, t) =
√

1/π

cosh(β̃t)
exp (−1

2
α̃x2 tanh(β̃t)), (4)

where α̃ = α exp(−iπ/4), β̃ = 2α exp(iπ/4). The time dependent 
width is δx(t) = [Re(α̃ tanh(β̃t))]−1/2 and it achieves the stationary 
value for 2αt � 1: δx0 = 2

1
4 /α.

3. Variational approach

To find localized stable states we employ the Lagrangian for-
malism to describe the behavior of unknown solution parameters. 
Let us introduce the following super-Gaussian trial function as an 
ansatz
u(x, t) = A(t)exp

(
−1

2

(
x

a(t)

)2m(t)

+ ib(t)x2 + iϕ(t)

)
, (5)

where A, a, b, m, ϕ are the amplitude, width, chirp, super-Gaussian 
index and linear phase, respectively.

For nonconservative systems being described by Eq. (3) the La-
grangian formalism with Euler–Lagrange equations can be formu-
lated as follows

∂L
∂u∗ − d

dt

(
∂L
∂u∗

t

)
− d

dx

(
∂L
∂u∗

x

)
= ∂LR

∂u∗ . (6)

Here L is the Lagrangian density of a conservative part of the sys-
tem given by

L = i

2
(ut u∗ − u∗

t u) − |ux|2 − 1

2
γ |u|4 (7)

and

∂LR

∂u∗ = R = (−iα2x2 + iδ)u (8)

is the right side of Eq. (3), namely a dissipation force.
To apply a variational approach we proceed from the ansatz (5). 

Let unknown function u(x, t) be expressed in some parameters 
ηi(t) (unknown too). To obtain equations for the unknown param-
eters we should consider spatially averaged Lagranjian

L(ηi(t), t) =
∞∫

−∞
L

(
û(x, t, ηi), û∗(x, t, ηi)

)
dx.

Then a system of Euler–Lagrange equations for parameters ηi

reads [24]

∂L

∂ηi
− d

dt

(
∂L

∂η̇i

)
=

∞∫
−∞

dx

(
R

∂u∗

∂ηi
+ R∗ ∂u

∂ηi

)
. (9)

In the case of our parametrization (5) of unknown solution, con-
servative part of the averaged Lagranjian takes the following form

L = −A2a

(
a2

m
�
( 3

2m

)
bt + 1

m
�
( 1

2m

)
φt + m

a2
�
(

2 − 1

2m

)
+

a2

m
�
( 3

2m

)
4b2 + 1

m
2− 1

2m �
( 1

2m

)γ

2
A2

)
.

(10)

Substituting this expression into the Euler–Lagrange equations (9)
we get ordinary differential equations for unknown parameters 
A, a, b, m and φ:

d

dt

(
�
( 1

2m

) A2a

m

)
=

(
−2

�
(

3
2m

)
�
(

1
2m

)α2a2 + 2δ

)(
�
( 1

2m

) A2a

m

)
,

(11)

d

dt

(
�
( 3

2m

) A2a3

m

)
=

(
8b −2

�
(

5
2m

)
�
(

3
2m

)α2a2 +2δ

)(
�
( 3

2m

) A2a3

m

)
,

(12)

a2

m
�
( 3

2m

)db

dt
= m

a2
�
(

2 − 1

2m

)
− 4

m
�
( 3

2m

)
a2b2

+ 2− 1
2m

�
( 1 )γ

A2, (13)

m 2m 4
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(
2

m
− 3

2m2
�

( 3

2m

)
+ 1

m2
�

( 1

2m

)

+ 1

2m2
�

(
2 − 1

2m

))
m

a2
�
(

2 − 1

2m

)
−(

− 2

m
+ 3

2m2
�

( 3

2m

)
− 3

2m2
�

( 1

2m

)

− ln(2)

m2

)
γ A2

4

2− 1
2m

m
�
( 1

2m

)
= 0, (14)

1

m
�
( 1

2m

)dφ

dt
= −2m

a2
�
(

2 − 1

2m

)
− 5

4

2− 1
2m

m
�
( 1

2m

)
γ A2. (15)

As seen from equations (11)–(15), parameter φ does not en-
ter into the first four equations for A, a, b, m. And so we can limit 
ourselves by considering only equilibrium states of these four pa-
rameters:

dA

dt
= 0,

da

dt
= 0,

db

dt
= 0,

dm

dt
= 0.

Equations for the fixed points of the ODE take the following form:

−2
�
(

3
2m

)
�
(

1
2m

)α2a2 + 2δ = 0, (16)

8b − 2
�
(

5
2m

)
�
(

3
2m

)α2a2 + 2δ = 0, (17)

m

a2
�
(

2 − 1

2m

)
− 4

m
�
( 3

2m

)
a2b2 + 2− 1

2m

m
�
( 1

2m

)γ

4
A2 = 0,

(18)(
2

m
− 3

2m2
�

( 3

2m

)
+ 1

m2
�

( 1

2m

)

+ 1

2m2
�

(
2 − 1

2m

))
m

a2
�
(

2 − 1

2m

)
−(

− 2

m
+ 3

2m2
�

( 3

2m

)
− 3

2m2
�

( 1

2m

)

− ln(2)

m2

)
γ A2

4

2− 1
2m

m
�
( 1

2m

)
= 0. (19)

Solving these equations we get two sets of stationary points. The 
first is:

bs1 =
(

�(5/2m)�(1/2m)

�(3/2m)2
− 1

)
δ

4
,

as1 = 1

α

√
�(1/2m)

�(3/2m)
δ,

As1 =
√√√√ 4m2

1
2m

γ �( 1
2m )

( 4

m
�
( 3

2m

)
a2

s1b2
s1 − m

a2
s1

�
(

2 − 1

2m

))
.

Stationary value of the super-Gaussian index ms1 is calculated nu-
merically by solving Eqs. (16)–(19). The rest parameters b, a, A
are obtained from the above formulas.

The second set corresponds to the solution, stationary ampli-
tude of which tends to zero (A → 0). So corresponding stationary 
values of the parameters are obtained from the same equations 
(16)–(19), supposing amplitude A to be zero:

8bs2 − 2(
�( 5

2m )

�( 3
2m )

− �( 3
2m )

�( 1
2m )

)α2a2
s2 = 0,

m

a2
s2

�
(

2 − 1

2m

)
− 4

m
�
( 3

2m

)
a2

s2b2
s2 = 0,

2

m
− 3

2m2
�

( 3

2m

)
+ 1

m2
�

( 1

2m

)
+ 1

2m2
�

(
2 − 1

2m

)
= 0.

The above equations give the following solution for stationary 
values for the second set:

As2 = 0,

ms2 = 1,

as2 = (2m)1/4

√
α

(
�(5/2m)

�(3/2m)
− �(3/2m)

�(1/2m)

)−1/4

×
(

�(2 − 1/2m)

�(3/2m)

)1/8

,

bs2 = α

4
(2m)1/2

(
�(5/2m)

�(3/2m)
− �(3/2m)

�(1/2m)

)1/2

×
(

�(2 − 1/2m)

�(3/2m)

)1/4

. (20)

In Fig. 1 behaviors of stationary values of variational parame-
ters a, b, A are shown when varying super-Gaussian parameter m
at different values of α in the case of defocusing media (γ > 0). 
Corresponding stationary values of these parameters obtained nu-
merically by solving the governing PDE (3) (horizontal lines) are 
also depicted there. Intersections of the curves with corresponding 
asymptotes, obtained numerically from PDE, give an appropriate 
value of m in a variational description of a given parameter. One 
can see that for values of dissipation α in the range 0.15–0.25
an optimal value of m is about m = 1 for parameters a, b and 
around m = 1.3 for A. This is right for values of the dissipation α
in the interval (0.15–0.25). If we select the optimal value m = 1.3
for A, variational stationary values of the width and the chirp will 
deviate from the results of the numerical simulations of PDE by 
≈ 0.15 relative units. So guided by above and the simplicity of re-
sulting equations, hereinafter we will consider the case when the 
super-Gaussian index is supposed to be 1 (m = 1), i.e. we use a 
Gaussian ansatz. In studying variational approach for another range 
of dissipation α one may be need to consider another value of 
super-Gaussian index m. In the case of m = 1 the system of equa-
tions for the parameters A, a, b takes the following form:

dA

dt
= (δ − 2b)A,

da

dt
= 4ab − α2a3,

db

dt
= 1

a4
− 4b2 + γ A2

2
√

2a2
. (21)

Then stationary values of the variational parameters are deter-
mined as:

bs1 = δ

2
, as1 =

√
2δ

α
, As1 =

√√
2

γ

(
4

δ3

α2
− α2

δ

)
(22)

and
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Fig. 1. Dependencies of the stationary variational parameters as1, bs1 and As1 on super-Gaussian index m for the case of a defocusing medium (γ = 1) for different dissipa-
tion α: a) the dependencies of width as1, b) the dependencies of chirp bs1, c) the dependencies of amplitude As1. Horizontal lines are for stationary values (asymptotical in 
time) obtained from numerically solved governing PDE (3). In the three plots solid lines are for α = 0.15, dash lines for α = 0.2 and dot lines for α = 0.25. Everywhere gain 
δ = 0.2.
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bs2 = α

2
√

2
, as2 = 21/4

√
α

, As2 = 0. (23)

Note that the value of the gain δ = α/
√

2 corresponds to the bifur-
cation point for the case of defocusing media (γ > 0). In the case 
of focusing media (γ < 0) the bifurcation point is shifted a little 
and δ � α/

√
2.

The linear stability analysis of the VA system for stationary val-
ues (22).

Let us look for the solutions of the system (21) in the form

A = As + A1, b = bs + b1, a = as + a1,

where A1/As, b1/bs, a1/as 	 1. The system of equations for small 
corrections A1, b1, a1 is:

da1

dt
= −4δa1 + 4

√
2δ

α
b1,

db1

dt
= −�a1 − 4δb1 + γ α2 As

2
√

2δ
A1,

dA1

dt
= −2Asb1, (24)

where

� = α5

√
2δ5/2

(
1 + γ A2

s δ

2
√

2α2

)
.

Looking for the solutions A1, a1, b1 ∼ exp(λt), we obtain the fol-
lowing characteristic equation:

λ3 + 8δλ2 + 16δ2
(

1 + �

2δ
√

2δα
+ γ α2 A2

s

16
√

2δ3

)
λ

+ 2
√

2γ α2 A2
s = 0. (25)

Real positive eigenvalues correspond to the unstable solutions of 
the VA system. Below we will study the different cases of linear, 
defocusing and focusing nonlinear media.
Linear media, γ = 0. When γ = 0 the nonlinear term in Eq. (3)
vanishes and we get a linear medium with a harmonic imaginary 
(dissipative) potential of strength α and homogeneous gain δ. In 
this case there only a single stationary point exists, determined by 
α (dissipation) to δ (gain) ratio equal to:

α/δ = √
2, (26)

as follows from the solution of variational equations Eq. (21) when 
γ = 0. Stationary value of amplitude A is determined by all the 
parameters of an initial wave packet. In other case, when the above 
equality is not observed, only divergence of the solution amplitude 
A or its vanishing is observed. At the same time parameters width 
a and chirp b tend to the stationary values Eq. (23)

bs = bs2, as = as2 (27)

irrespective of the amplitude dynamics.
It should be noted the fact that a stationary value of the wave 

packet width as2 obtained from our variational analysis of the gov-
erning equation Eq. (3) using ansatz Eq. (5) coincides with the one 
determined by Berry’s solution Eq. (4).

Defocusing Kerr media, γ > 0. When γ > 0 all factors in char-
acteristic equation Eq. (25) are of the positive sign, so eigenvalues 
of the VA problem are to be negative. In this case stable stationary 
points Eq. (22) exist provided that α/δ ≤ √

2. Stationary values of 
the parameters Eq. (22) are:

bs = bs1, as = as1, As = As1. (28)

If not and α/δ >
√

2 the amplitude of solution A is going to zero 
(As = 0), but the parameters chirp and width keep other stationary 
nonzero values Eq. (23)

bs = bs2, as = as2. (29)

So the point Eq. (26) is a bifurcation point separating solutions 
Eq. (22) and Eq. (23).
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Fig. 2. Time dependencies of the solution parameters a, b and A calculated from ODE Eq. (21) and PDE Eq. (3) for different values of gain δ = 0.2, α/
√

2 and 0.05 in the 
case of linear medium (γ = 0) are shown. Evolutions of the parameters calculated from the ODE are presented by dash-dot lines. a) Evolutions of the width a, b) evolutions 
of the chirp b. The parameters a and b calculated by solving PDE are presented by solid lines. All the three dependencies calculated by ODE for different δ coincide. The 
same is for ones calculated by PDE. c) Time dependencies of the amplitude A calculated by PDE are presented for δ = 0.2 (solid line), δ = α/

√
2 (dash line) and δ = 0.05

(dot line). All the dependencies of parameter A calculated by ODE are presented by dash-dot lines for all values of the gain δ. Everywhere dissipation α = 0.2.
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Focusing Kerr media, γ < 0. In this case, for any dissipation α to 
gain δ ratio there exists a divergent set of the solution parameters:

bs → 0, as → 0, A → ∞. (30)

Provided that α/δ ≥ √
2 there exists also a nonstable set of the 

solution parameters Eq. (28) with finite amplitude A. Evolution of 
the solution in this case depends on parameters of the initial wave 
packet including its amplitude A0. If A0 is greater than some value, 
the amplitude A diverges and the case Eq. (30) is realized. When 
A0 is less, the solution parameters evolve to the case Eq. (23):

bs = bs2, as = as2, As → 0.

4. Numerical results

Our numerical simulations of evolution of a single pulse in the 
linear and nonlinear Kerr media are based on the dimensionless 
governing equation Eq. (3) and a set of ordinary equations Eq. (21)
(to describe variational parameters). In all PDE calculations of the 
governing equation, we have employed a wave packet Eq. (4) from 
[15,16] as an initial wave packet (with t0 = 0.1). This expression 
corresponds to the initial state in the form of the chirped Gaussian 
wave packet and is the particular choice of the initial variational 
ansatz with A0 = 0.564, b0 = 0.0001, a0 ≈ 5. In numerical simu-
lations of the governing PDE Eq. (3), amplitude A of the localized 
wave packet u(x, t), its squared width a and chirp b at time t are 
calculated as

A = max|u(x, t)|,

a2 =
∫ ∞
−∞ x2|u(x, t)|2dx∫ ∞
−∞ |u(x, t)|2dx

,

b =
Im

(∫ ∞
−∞ u(x, t)2u(x, t)∗x 2dx

)
∫ ∞ |u(x, t)|4dx

. (31)

−∞
First we considered dynamics of the pulse in a linear medium 
(γ = 0) with different values of the gain δ.

When γ = 0 variational parameters width a and chirp b tend 
in time to stationary values Eq. (23) irrespective of the amplitude 
dynamics. The behavior of A in VA is determined by right side of 
the first equation of set (21). So if δ < 2bs2 (δ > 2bs2) the ampli-
tude A is going to zero (to infinity). When the gain is equal to 
δ = α/

√
2 stabilization of the amplitude is observed. It should be 

noted that this stationary amplitude is not equal to As1 because 
of that Eq. (22) determining As1 is not applicable when γ = 0. In 
this case the value of stationary A is determined by all the initial 
values of parameters A, a, b governing the wave packet dynamics.

In Fig. 2 evolutions of the pulse parameters chirp b, width a
and amplitude A in the linear case, γ = 0 are shown. The evo-
lutions of variational parameters a, b being described by set (21)
for different values of gain δ = 0.2, α/

√
2 and 0.05 are depicted 

by dash-dot lines. Ones obtained from solution of the governing 
PDE (3) making use of Eq. (31) are presented by solid lines. Ev-
erywhere dissipation α = 0.2. One can see that curves describing 
ODE evolutions of a, b for different gain δ coincide. The cause of it 
is that equations (21) determining dynamics of the VA parameters 
a and b do not contain parameter δ and are independent on the 
dynamics of A. Coincidence of the PDE calculated time dependen-
cies of parameters a, b for different gain δ as in the case of ODE 
time dependencies for a, b shows that when m equals to 1 VA 
description of a, b is in a good agreement with PDE simulations.

Evolutions of the amplitude depend on the value of δ, or rather 
the gain to dissipation ratio, δ/α. In Fig. 2c time dependencies of 
variational amplitude A (ODE calculated) and the dependencies ob-
tained from PDE using Eq. (31) differ noticeably. But it should be 
noted the fact that stabilization of states obtained by simulation 
of PDE Eq. (3) and stabilization of ones obtained from variational 
ODE calculations Eq. (21) are realized at the same value of the ra-
tio α/δ = √

2.
Then we considered the case of a defocusing medium (γ > 0).
In Fig. 3 behaviors of the pulse parameters chirp b, width a and 

amplitude A are shown for a defocusing medium, γ = 1. As seen, 
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Fig. 3. Time dependencies of the pulse parameters chirp b, width a and amplitude A in the case of a defocusing medium (γ = 1) for two values of the dissipation to gain 
ratio: α/δ <

√
2 (stable solutions) and α/δ >

√
2 (decaying solutions). a) Evolutions of width a; b) evolutions of chirp b; c) evolutions of amplitude A. All the dependencies 

of parameters a, b, A calculated by ODE are presented by dash-dot lines. The dependencies of ones calculated by PDE for α/δ <
√

2, (α = 0.2, δ = 0.2) (stable evolution) 
are presented by solid lines and by dot-lines for α/δ >

√
2, (α = 0.4, δ = 0.2) (decaying evolution).

Fig. 4. Time dependencies of the pulse parameters chirp b, width a and amplitude A are shown for the case of a focusing medium (γ = −1) for two values of the initial 
wave packet amplitude, A0 > Acrit and A0 < Acrit for α = 0.4, δ = 0.2. a) Evolutions of width a; b) evolutions of chirp b; c) evolutions of amplitude A. All the dependencies 
of parameters a, b, A calculated by ODE are presented by dash-dot lines. PDE calculated evolutions of the divergent dependencies (A0 > Acrit ) are presented by solid lines 
and evolutions of the decaying dependencies (A0 < Acrit ) by dot lines.
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when the existence condition α/δ ≤ √
2 is observed, all pulse pa-

rameters a, b, A possess stable stationary values. Ones calculated 
by ODE are equal to as1, bs1, As1 correspondingly. If the exis-
tence condition is not observed, the amplitudes A (ODE and PDE 
calculated) tend to zero. At the same time ODE calculated pulse 
parameters a and b tend to other stable stationary values, viz. as2

and, bs2 correspondingly. Everywhere the dependencies calculated 
by ODE are presented by dash-dot lines.

At last we considered the case of a focusing medium (γ < 0).
In Fig. 4 evolutions of the wave packet parameters chirp b, 
width a and amplitude A obtained from PDE simulation of Eq. (3)
and ODE calculation Eq. (21) are shown for the case of a focusing 
medium, γ = −1. All ODE calculated dependencies are depicted 
by dash-dot lines. When γ = −1 for any value of dissipation α
and gain δ there exists a divergent solution of amplitude A → ∞
with the values of width a and chirp b tending to zero. When 
α/δ >

√
2 a solution emerges with decaying amplitude A and sta-

ble stationary values of width a and chirp b. One can see that 
when value of the initial wavepacket amplitude A0 is greater than 
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Fig. 5. Time dependencies of the PDE calculated pulse parameters amplitude A and width a are shown for the case of a defocusing medium (γ = 1) at different set of 
dissipation α and gain δ being close to the bifurcation point δ = α/

√
2. a) Evolutions of amplitude A; b) evolutions of width a. Dash lines are for δ = α/

√
2 + 0.1, dash dot 

lines are for δ = α/
√

2 + 0.05, solid lines are for δ = α/
√

2, and dot lines are for δ = α/
√

2 − 0.05. Everywhere α = 0.2. Only the parameter δ is varied at different sets.

Fig. 6. Time dependencies of the pulse parameters amplitude A and width a in the case of a focusing medium (γ = −1) for different set of dissipation α and gain δ being 
close to the bifurcation point δ = α/

√
2. a) Evolutions of amplitude A; b) evolutions of width a. Dash lines are for δ = α/

√
2 + 0.05, dash dot lines are for δ = α/

√
2, solid 

lines are for δ = α/
√

2 − 0.059, dot lines are for δ = α/
√

2 − 0.06. Everywhere α = 0.2 and only parameter δ is varied in different sets.
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some critical value Acrit being determined by characteristic equa-
tion Eq. (25) and the rest parameters a and b, the solution diverges. 
For given α = 0.4, δ = 0.2, a0 = 1.58, b0 = 0.1 critical amplitude 
Acrit  0.925. When initial amplitude A0 < Acrit , the solution am-
plitude tends to zero but parameters width a and chirp b tend to 
stationary values as2 and bs2.

As seen VA description of the wave-packet evolutions are in 
agreement with the simulations of PDE, Eq. (3).

In Fig. 5 time dependencies of the PDE calculated pulse pa-
rameters b, a, A in a defocusing medium (γ = 1) are shown for 
different set of dissipation α and gain δ being close to the bifurca-
tion point δ = α/

√
2. As seen the value of stationary amplitude A

is equal to zero (As1 = 0) at the bifurcation point α/δ = √
2. The 

greater the gain δ to dissipation α ratio δ/α the greater stationary 
value of amplitude A.

In Fig. 6 time dependencies of the PDE calculated pulse pa-
rameters b, a, A are shown for the case of a focusing medium 
(γ = −1) for different values of dissipation α and gain δ when 
their ratio δ/α is close to 

√
2. The bifurcation point for this case 

is shifted and determined by δ = α/
√

2 − 0.059. One can see that 
evolutions near this point are very unstable.

In Figs. 7, 8 and 9 evolutions of the wave packet profiles are 
shown to demonstrate the processes of stabilization (α = 0.2, δ =
0.2) and decay (α = 0.4, δ = 0.2) in a defocusing medium (γ = 1) 
and divergence of wave packets (α = 0.4, δ = 0.2) in a focus-
ing medium (γ = −1). As was mentioned for a focusing medium, 
when the initial wavepacket amplitude A0 > Acrit being deter-
mined by parameters a, b, the solution diverges. For given α =
0.4, δ = 0.2, a0 = 1.58, b0 = 0.1 critical amplitude Acrit  0.925.

One can see that profiles of the wave packet keep their forms 
during the evolution. The radiation is not observed for all con-
sidered cases. The wave packet profiles have been calculated by 
simulation of the governing equation Eq. (3).
Fig. 7. Stabilization of the wave packet profile is shown for the case of a defocusing 
medium γ = 1 when α/δ <

√
2, (α = 0.2, δ = 0.2).

5. Conclusion

In conclusion we have investigated the dynamics of the wave 
packets in media with cubic nonlinearity and an imaginary 
quadratic potential with addition of gain. We have carried out 
variational analysis of evolution of the wave packet and numeri-
cal simulations of the governing equation Eq. (3). We have found 
out the existence of stable stationary wave packets in linear and 
defocusing media. The latter case corresponds to the existence of 
bright solitons in media with the defocusing nonlinearity. For the 
case when the nonlinearity corresponds to a focusing medium, 
fixed stationary points for the wave packet parameters obtained 
from VA, have been revealed to be unstable. In the case of a linear 
medium, we have shown that asymptotical behaviors of parame-
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Fig. 8. Decay of the wave packet profile is shown for the case of a defocusing 
medium (γ = 1) when α/δ >

√
2, (α = 0.4, δ = 0.2).

Fig. 9. Divergence of the wave packet profile is shown for the case of a focusing 
medium γ = −1 when α/δ >

√
2 and A0 > Acrit . The parameters α = 0.4, /δ =

0.2, a0 = 1.58, b0 = 0.1, Acrit  0.925.

ters width a and chirp b of the wave packet are independent on 
evolution of the amplitude A (the wave power or the number of 
atoms for the BEC). The predicted stationary states can be observed 
in the experiment with atomic BEC in a cigar-shaped trap with the 
imaginary quadratic potential, atoms feeding and the repulsive in-
teractions between atoms.
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