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Different models of coupled oscillators with parity-time (PT) symmetry are studied. Hamiltonian 
functions for two and three linear oscillators coupled via coordinates and accelerations are derived. 
Regions of stable dynamics for two coupled oscillators are obtained. It is found that in some cases, an 
increase of the gain-loss parameter can stabilize the system. A family of Hamiltonians for two coupled 
nonlinear oscillators with PT-symmetry is obtained. An extension to high-dimensional PT-symmetric 
systems is discussed.
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1. Introduction

A set of coupled oscillators is a basic model of interacting sys-
tems. Many important ideas, such as the energy exchange, the 
eigenfrequency splitting and normal modes, are introduced in the 
study of this model, see e.g. [1,2].

Many types of linear coupled oscillators can described by a 
Hamiltonian, which is a quadratic function of coordinates and mo-
menta. Energy is conserved in Hamiltonian systems, therefore con-
servative systems are associated usually with ideal systems without 
dissipation (loss) and amplification (gain). Let us consider a set of 
two coupled oscillators:

ẍ1 + 2γ ẋ1 + ω2
0x1 + κx2 = 0,

ẍ2 − 2γ ẋ2 + ω2
0x2 + κx1 = 0 (1)

where x1 and x2 are the coordinates of the oscillators, γ is the 
parameter of dissipation (for x1) and amplification (for x2), ω0 is 
the frequency of a single oscillator, and κ is the coupling parame-
ter. The overdot denotes the derivative on t . Model (1) represents 
an open system with energy flow from the second oscillator (as-
suming γ > 0) to the first oscillator. System (1) has been studied 
in Refs. [3–6]. Surprisingly, it was found in Ref. [5] that system (1)
has the corresponding Hamiltonian.

Model (1) is a simple example of systems with parity-time (PT) 
symmetry [7,8]. Basically, this means that the system is invari-
ant under inversion of both space and time. If one interchanges 
x1 and x2, and change t to −t , Eqs. (1) remains the same. Usu-
ally, PT-symmetric systems are stable for some range of the system 
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parameters, and they become unstable when a certain parameter 
exceed the symmetry breaking threshold [7].

A notion of PT-symmetry came from attempts to extend quan-
tum mechanics beyond Hermitian operators [9]. A typical PT-
symmetric Hamiltonian has a complex-valued potential U (r). The 
imaginary part of U (r) characterizes amplification and dissipation 
of the wave function. Therefore, a PT-symmetric quantum system 
is a model with distributed gain and loss. When gain and loss 
are well balanced, the system is in a stationary state. Later, this 
idea was expanded to other fields of physics, such as classical me-
chanics, electronics, and optics. The idea is very promising in op-
tics, where a number of interesting applications has been realized. 
These include the double refraction, unidirectional light propaga-
tion [10–13], perfect absorbers [14] and lasers [15,16].

In present paper, firstly, we present various physical sys-
tems that obey PT-symmetry. Then, we consider an extension of 
model (1), which is Hamiltonian as well. Moreover, we find nonlin-
ear generalization of the model, which is also Hamiltonian, similar 
to that analyzed in Ref. [17]. Systems of three and more degrees of 
freedom are also discussed.

2. PT-symmetric models

In this Section, we present several models with PT-symmetry. 
The aim of this Section is to demonstrate that a PT-symmetric 
model is not an abstract notion, but it can describe real physical 
systems. A PT-symmetric system requires an element that provide 
amplification, or negative dissipation. Such elements are discussed, 
for example, in Ref. [1], and we use them to construct different 
types of PT-symmetric systems.

We start with two coupled oscillators shown in Fig. 1(a). Two 
masses, m1 and m2, are connected with each others and walls by 

http://dx.doi.org/10.1016/j.physleta.2016.12.023
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:etsoy@uzsci.net
http://dx.doi.org/10.1016/j.physleta.2016.12.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2016.12.023&domain=pdf


E.N. Tsoy / Physics Letters A 381 (2017) 462–466 463
Fig. 1. Examples of PT-symmetric models: (a–d) mechanical systems, (e) an electrical 
system, and (f) coupled optical waveguides, where the right (darker) waveguide has 
resonance atoms.

means of springs. Mass m1 is placed on a fixed frictionless surface, 
however there is dissipation of energy due to surrounding media. 
We assume that the dissipation force is proportional to the os-
cillator velocity. The second mass is placed on a conveyor, which 
moves with constant velocity V c . The conveyor drags the mass be-
cause of friction. In the absence of coupling between the masses, 
the equation of motion of m2 is the following [1]:

ẍ2 + �ẋ2 + ω2
0x2 = F (ẋ2 − V c), (2)

where F is the force that depends on the relative velocity of 
the body and the conveyor. For small velocities ẋ2, one can ex-
pand F ≈ F (V c) + F ′(−V c)ẋ2. A constant force F (V c) results in 
a shift of the stationary point for x2, while the second term re-
sults in modification of the dissipation parameter. By a proper 
choice of F ′(−V c), one can make the dissipation parameter neg-
ative, � − F ′(−V c) = −2γ , which results in amplification. Then, 
with a corresponding choice of the system parameters, the model 
in Fig. 1(a) is reduced to Eqs. (1).

Oscillators in Fig. 1(a) are coupled via coordinates x1 and x2. 
However, it is possible to make inertial coupling between oscil-
lators as shown in Fig. 1(b). Mass m1 oscillates with dissipation 
inside m2. Amplification for mass m2 is achieved by means of a 
conveyor, as in Fig. 1(a). One can show that oscillators in this case 
are coupled via acceleration. (Actually, the equations of motion can 
be transformed further such that only coordinate coupling remains, 
however, the initial equations, derived from the Lagrangian, have 
coupling via acceleration, see e.g. Ref. [2].)

A PT-symmetric mechanical system can be realized with a set 
of two pendulums coupled via a spring, see Fig. 1(c). Each pendu-
lum has a sleeve on the upper end of the rod. This sleeve is put 
on a shaft (gray circles in Fig. 1(c)). The shaft of the second pendu-
lum rotates with constant angular frequency �. The rotating shaft, 
similar to the moving conveyor in Figs. 1(a) and (b), introduces 
amplification for the second pendulum. We mention that a sin-
gle pendulum with rotating shaft is called the Froude pendulum, 
see e.g. [1]. In linear approximation, the dynamics of pendulums is 
described by Eqs. (1). Oscillators in Fig. 1(c) are coupled via coor-
dinates φ1 and φ2, similar to those in Fig. 1(a).
It is possible also to introduce acceleration coupling between 
the pendulums, as in a double pendulum presented in Fig. 1(d). 
The first pendulum in Fig. 1(d) is attached to the second one via 
a movable joint. The second pendulum is the Froude pendulum, so 
that the rotating shaft provides amplification.

The next example is a pair of oscillatory circuits, presented 
Fig. 1(e). Two RLC circuits are coupled with each other via mutual 
inductance M (acceleration coupling) and capacitor Cc (coordinate 
coupling). The main difference of this circuit from conventional 
ones is that R2 has negative resistance, providing gain in the sys-
tem. Negative resistance can be realized using a tunnel diode or an 
operational amplifier. PT-symmetric electronic circuits have been 
studied in Refs. [3,4]. Also, a system of two Josephson junctions 
with capacitive coupling is modeled by two pendulums coupled 
via acceleration [18]. Then, it is possible to realize a PT-symmetric 
system in such superconducting circuits by implementing the neg-
ative resistance in either junction.

The last example in this Section is a system of two circular 
optical waveguides in Fig. 1(f). The waveguides of a size of few 
microns and less are coupled due to interaction of evanescent 
fields, therefore it is a coordinate coupling. The second waveg-
uide has resonance atoms inside that can be pumped by external 
light. This creates amplification in the waveguide, so that with a 
proper choice of parameters, the system can be considered as PT-
symmetric. Similar systems are studied, for example, in Refs. [5,
15,16]. The oscillation of electromagnetic fields inside the waveg-
uides is described in linear approximation by equations similar to 
Eqs. (1).

It is interesting also to consider the quantum behavior of cou-
pled PT-symmetric oscillators. Several examples are presented in 
Refs. [5,19], see also reviews [7,8]. In Ref. [5], the twofold bifurca-
tion is observed in the classical and quantized versions of the sys-
tem. In Ref. [19], a relation between a symmetric quadratic Hamil-
tonian (c.f. Sec. 3) and a pseudo-Hermitian matrix is obtained. We 
expect that coupling via acceleration can add new features to the 
dynamics of quantum oscillators.

The examples presented in this Section shows that two types 
of coupling exist, namely via coordinates and via accelerations. In 
the next Section, we obtain a model that include both types of 
coupling.

3. Hamiltonian systems of PT-symmetric oscillators

3.1. Two linear oscillators

In this Section we derive an extension of system (1), which 
is also Hamiltonian. We start with a general expression for the 
Hamiltonian written as a quadratic form:

H = zT A z, (3)

where A = {aij, i, j = 1, . . . , 4} is a 4 × 4-matrix, z = (x1, x2, p1,

p2)
T is a column vector, p1 and p2 are canonical momenta of 

coordinates x1 and x2, respectively, and superscript T denote trans-
position. Without loss of generality, one can assume that A is 
symmetric, since a quadratic form with an anti-symmetric matrix 
equals zero.

The equations of motion are obtained from the Hamilton equa-
tions:

ẋk = ∂ H

∂ pk
, ṗk = − ∂ H

∂xk
, k = 1,2. (4)

From equations for ẋk , we find the relation between momenta and 
velocities. Then, equations for ṗk give the following equations of 
motion
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ẍ1 + 2γ ẋ1 + ω2
0x1 + κ2x2 + μ2 ẍ2 = 0,

ẍ2 − 2γ ẋ2 + ω2
0x2 + κ1x1 + μ1 ẍ1 = 0, (5)

where

γ = (a24 − a13) + (a14a33 − a23a44)/a34,

μ1 = −a44/a34, μ2 = −a33/a34,

ω2
0 = 4[a12(a

2
34 − a33a44) + a13(a23a44 − a24a34) +

a14(a24a33 − a23a34)]/a34,

κ1 = 4[a13(a13a44 − a14a34) + a33(a
2
14 − a11a44) +

a34(a11a34 − a13a14)]/a34,

κ2 = 4[a23(a23a44 − a24a34) + a33(a
2
24 − a22a44) +

a34(a22a34 − a23a24)]/a34. (6)

Equations (5) are an extension of Eqs. (1), they are Hamiltonian, 
and they involve coupling via both coordinates and accelerations. 
The only conditions we use are a34 �= 0 and a2

34 − a33a44 �= 0, 
therefore model (5) is a most general form of two coupled lin-
ear oscillators with PT-symmetry. In particular, each equation in 
(5) may include only a single gain-loss term.

System (5) is PT-symmetric, because it is invariant with re-
spect to interchange of variables x1 and x2, followed by inver-
sion of time. In other words, system (5) is invariant under PT
transformation, where Px1 = x2, Px2 = x1, T x1(t) = x1(−t), and 
T x2(t) = x2(−t).

The Hamiltonian of Eqs. (5) is be written as

H L = −μ2 p2
1 + μ1 p2

2

2(1 − μ1μ2)
+ p1 p2

1 − μ1μ2
− γ (x1 p1 − x2 p2) +

κ1 + γ 2μ1

2
x2

1 + κ2 + γ 2μ2

2
x2

2 + (ω2
0 − γ 2)x1x2. (7)

When κ1 = κ2 and μ1 = μ2 = 0, we obtain Hamiltonian of Eqs. (1), 
found in Ref. [5]. The first of the Hamilton equations (4) gives

p1 = γ (μ1x1 − x2) + μ1ẋ1 + ẋ2,

p2 = γ (x1 − μ2x2) + ẋ1 + μ2 ẋ2. (8)

Then substitution Eqs. (8) into the second of Eqs. (4) results in 
Eqs. (5).

Equations (5) depend on six parameters (ω0, γ , κ1, κ2, μ1, 
and μ2). By construction, the oscillators have the same frequency 
ω0 and gain-loss parameter γ , however the coupling parameters 
can be taken unequal. Transforming x1 or x2, one can obtain that 
κ1 = κ2, then five independent parameters remain. To simplify the 
analysis, we assume in the rest of Sec. 3.1 and in Sec. 3.2 that 
κ1 = κ2 = κ and μ1 = μ2 = μ.

We emphasize an unusual relation between Hamiltonian (7)
and motion equations (5). Usually, the Hamiltonian equations (4)
for k-th variable (a base variable) give the equation of motion 
(the base terms) for the same variable. In this equation, the terms 
that include i-th variable (i �= k) are considered as a coupling. In 
Eqs. (5), the base terms are considered as a coupling, while the 
coupling is treated as a base. In other words, the equation for x1
are obtained from the Hamiltonian equations for x2, and vise versa. 
We will see the consequences of this fact in Secs. 3.2 and 3.3.

Typically, PT-symmetric systems are stable when a certain pa-
rameter (usually, the gain-loss parameter) is below the thresh-
old [7]. Above the threshold, the symmetry breaking transition 
occurs that results in instability.

In order to check the stability of motion, we obtain the charac-
teristic equation, by substituting xk = ak exp(iωt) into Eqs. (5):
Fig. 2. The diagram of stability: the threshold of γ versus coordinate coupling κ
for ω0 = 1. (a) μ = 0 (solid line), μ = 0.2 (long-dashed line), and μ = 0.8 (short-
dashed line). (b) μ = 1.2 (solid line), μ = 1.5 (long-dashed line), and μ = 2 (short-
dashed line).

(1 − μ2)ω4 + 2(−ω2
0 + 2γ 2 + κμ)ω2 + ω4

0 − κ2 = 0. (9)

Solution of this equation gives eigenfrequencies

ω2
1,2 = 1

(1 − μ2)

[
(ω2

0 − 2γ 2 − κμ) ±√
(ω2

0 − 2γ 2 − κμ)2 − (1 − μ2)(ω4
0 − κ2)

]
, (10)

while ω3 = −ω1 and ω4 = −ω2. System (5) is in oscillatory (sta-
ble) regime, when all ω1-4 are real. This is realized, when

μ2 < 1, κ̃2 ≤ 1, γ̃ 2 ≤ γ̃ 2
1 , or

μ2 > 1, κ̃2 ≥ 1, γ̃ 2 ≥ γ̃ 2
2 , κ̃μ < 0, (11)

where

γ̃ 2
1 =

[
1 − κ̃μ −

√
(1 − μ2)(1 − κ̃2)

]
/2,

γ̃ 2
2 =

[
1 − κ̃μ +

√
(1 − μ2)(1 − κ̃2)

]
/2,

where γ̃ = γ /ω0 and κ̃ = κ/ω2
0 .

Fig. 2 shows the diagram of stability for different values of μ. 
In absence of gain and loss γ̃ = 0, stable oscillations exist only 
when |μ| < 1 and |̃κ | < 1. When γ̃ > 0, the stability region for 
0 < μ < 1, Fig. 2(a), is below the corresponding curve. This is a 
typical situation: an increase of γ̃ results in PT-symmetry break-
ing and infinite growth of amplitudes. For μ > 1, Fig. 2(b), the 
unstable dynamics becomes stable, when γ̃ is above the corre-
sponding curve. This is an interesting case, in which an increase of 
the gain-loss parameter plays a stabilizing role in contrast to typi-
cal examples. We attribute this type of behavior to the presence of 
coupling via acceleration.

For 0 < μ < 1, there are two branches of the threshold curve, 
and the threshold equals zero, when κ̃ = μ, see Fig. 2(a). For 
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Fig. 3. Numerical solution of Eqs. (5) for ω0 = 1, κ = 0.5, μ = 0.2. (a) γ = 0.15, and 
(b) γ = 0.17. Solid (dashed) lines are for x1(t) [x2(t)].

μ = 1, only one (left) threshold branch remains. The stability di-
agram for γ̃ < 0 (for μ < 0) is obtained by reflection of Fig. 2 with 
respect to κ-axis (γ -axis).

Fig. 3 shows results of numerical simulations of Eqs. (5) for 
ω0 = 1, κ = 0.5, μ = 0.2 and different values of γ . The threshold 
for PT-symmetry breaking is γth = 0.1604, see Fig. 2(a). There exist 
stable oscillations in the system below the threshold, see Fig. 3(a). 
Since the system is characterized by the two normal frequencies, 
Eq. (10), there is a beating between them. When γ exceeds the 
threshold, see Fig. 3(b), the system becomes unstable. In Fig. 3(b), 
one pair of normal frequencies is real, while the other is complex 
(pure imaginary). With further increase of γ , all ωk become com-
plex, so that x1 and x2 diverge exponentially, without oscillations.

There is a seeming contradiction between the energy conserva-
tion and an infinite growth of coordinates and velocities in sys-
tems (1) and (5) above the threshold. We mention that an infinite 
growth of coordinates is not prohibited in Hamiltonian systems. 
For example, small deviations of the inverted pendulum are de-
scribed by ẍ − ω2

0x = 0 with the Hamiltonian H = ẋ2/2 − ω2
0x2/2. 

Then, x and ẋ diverge, while energy remains constant. Infinite 
growth of coordinates often means that the model under consid-
eration is incomplete, so that more terms are necessary for an 
adequate description of the process.

By introducing new variables u1 = x1 + x2 and u2 = x2 − x1, 
Eqs. (5) can be written as two oscillators with gain-loss coupling:

(1 + μ)ü1 − 2γ u̇2 + (ω2
0 + κ)u1 = 0,

(1 − μ)ü2 − 2γ u̇1 + (ω2
0 − κ)u2 = 0. (12)

Multiplying (12) by u̇1 and u̇2, respectively, we obtain another 
form of Hamiltonian (in initial coordinates)

H L1 = 1

2

[
(1 + μ)(ẋ1 + ẋ2)

2 − (1 − μ)(ẋ2 − ẋ1)
2 +

(ω2
0 + κ)(x1 + x2)

2 − (ω2
0 − κ)(x2 − x1)

2
]

(13)
This form of the Hamiltonian does not depend explicitly on γ , 
while H L does. Switching to canonical variables (xk and pk) trans-
forms H L1 to H L . Yet, Hamiltonian H L1 can be useful for construc-
tion of Hamiltonian functions for high-dimensional systems.

3.2. Two nonlinear oscillators

We consider here a nonlinear generalization of model (2)

ẍ1 + 2γ ẋ1 + ω2
0x1 + κx2 + μẍ2 + F1(x1, x2) = 0,

ẍ2 − 2γ ẋ2 + ω2
0x2 + κx1 + μẍ2 + F2(x1, x2) = 0, (14)

where F1 and F2 are nonlinear functions, such that F1(x1, x2) =
F2(x2, x1). In order to make system (14) Hamiltonian, one has to 
find a potential U N L(x1, x2) such that F1 = ∂U N L/∂x2 and F2 =
∂U N L/∂x1. It easy to find such Hamiltonian by using the same 
transformation as for Eqs. (12). Clearly, forces F1 and F2 should 
satisfy the following conditions

F1(x1, x2) + F2(x1, x2) = 2 f+(x1 + x2),

F1(x1, x2) − F2(x1, x2) = 2 f−(x2 − x1), (15)

where f+(z) and f−(z) are some functions. Then

F1(x1, x2) = f+(x1 + x2) + f−(x2 − x1),

F2(x1, x2) = f+(x1 + x2) − f−(x2 − x1). (16)

For such a choice of F1 and F2, Hamiltonian is written as

H = H L + U+(x1 + x2) + U−(x2 − x1), (17)

where U+(z) is an arbitrary function and U−(z) is an even func-
tion. For Hamiltonian in Eq. (17), nonlinear forces are found as

F1 = ∂

∂x2
[U+(x1 + x2) + U−(x2 − x1)],

F2 = ∂

∂x1
[U+(x1 + x2) + U−(x2 − x1)]. (18)

We note that F1 (F2) is found as a derivative of U+ + U− on x2
(x1). This is a consequence of unusual relation between the equa-
tions of motion and the Hamiltonian.

Let’s consider several examples of systems with Hamilto-
nian (17). One can take U+ and U− in the form of polynomial 
functions

U+ + U− = a(x1 + x2)
m + b(x2 − x1)

n, (19)

where a, b, m and n are some constants. For n = m = 4 and 
a = −b = 1/8, we get Eqs. (14) with F1 = (x2

1 + 3x2
2)x1 and F2 =

(3x2
1 + x2

2)x2. Such a model for μ = 0 has been studied in Ref. [17]. 
We also mention that the reduction of this model, using the ro-
tating wave approximation, results in a system that describes the 
dynamics of waves in two coupled optical waveguides [17]. The 
authors of Ref. [17] have proved also the exact solvability of the 
reduced system.

If we take U+ and U− in the form of trigonometric functions

U+ + U− = a cos(x1 + x2) + b cos(x2 − x1), (20)

we obtain a system with nonlinearities similar to coupled pendu-
lums (see Fig. 1(c) and (d)). For example, when a = −b = −1/2, 
we get Eqs. (14) with F1 = sin x1 cos x2 and F2 = cos x1 sin x2.

Therefore, in this Section we obtain a family of Hamiltonian 
functions (17) that correspond to PT-symmetric nonlinear systems 
with two degrees of freedom.
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3.3. Extension to N linear oscillators

There are different ways to generalize Eqs. (5) to a system of 
N linear oscillators, such that the system is PT-symmetric and 
Hamiltonian [6]. A simple model is a set of PT-symmetric pairs 
of oscillators, coupled via coordinates only. A complete model in-
volves coupling of the both types between all oscillators. However, 
in this case, an explicit equation for Hamiltonian becomes compli-
cated.

Here, we present an example of three coupled PT-symmetric 
oscillators written as

ẍ1 + 2γ ẋ1 + ω2
0x1 + κ2x2 + κ23x3 + μ2ẍ2 + μ23 ẍ3 = 0,

ẍ2 − 2γ ẋ2 + ω2
0x2 + κ1x1 + κ13x3 + μ1ẍ1 + μ13 ẍ3 = 0,

ẍ3 + ω2
3x3 + κ13x1 + κ23x2 + μ13ẍ1 + μ23ẍ2 = 0. (21)

The Hamiltonian of Eqs. (21) has the following form

H = 1

2	
[−(μ2 − μ2

23)p2
1 − (μ1 − μ2

13)p2
2 + (1 − μ1μ2)p2

3] +
1

	
[(1 − μ13μ23)p1 p2 + (μ2μ13 − μ23)p1 p3 +

(μ1μ23 − μ13)p2 p3] +
γ

1 − μ13μ23
[−x1 p1 + x2 p2 + μ13x1 p3 − μ23x2 p3]

1

2

[
γ 2 μ1 − μ2

13

(1 − μ13μ23)2
+ κ1

]
x2

1 +

1

2

[
γ 2 μ2 − μ2

23

(1 − μ13μ23)2
+ κ2

]
x2

2 + ω2
3

2
x2

3 +(
ω2

0 − γ 2

1 − μ13μ23

)
x1x2 + κ13x1x3 + κ23x2x3, (22)

where 	 = 1 − μ1μ2 + μ1μ
2
23 + μ2μ

2
13 − 2μ13μ23.

Equations (21), similarly to Eqs. (5) and (14), have two types 
of coupling. Therefore, they generalize the systems considered ear-
lier [5,6]. We note a peculiar structure of the coefficient matrix 
in Eqs. (21). This is a consequence of the relation, mentioned in 
Sec. 3.1, between the Hamiltonian and the equation of motions.

The analysis of the coefficients shows that only symmetric con-
figurations are possible. Namely, either all three oscillators are cou-
pled with each other, yielding a symmetric planar configuration, or 
the oscillators are connected as 1 −3 −2, forming one-dimensional 
structure. An asymmetric configuration, like 1 − 2 − 3, is not pos-
sible, because breaking the coupling between oscillators 1 and 3 
results in decoupling of oscillators 2 and 3. Also, one cannot form 
a Hamiltonian PT-symmetric system from three oscillators, where 
two oscillators are dissipative with γ1 and γ2, respectively, and 
the third oscillator is with gain −γ3, even when there is a balance 
γ1 + γ2 = γ3. However, it should be noted that asymmetric gain-
loss balanced systems do exist, as discussed in Ref. [20], however 
they are not Hamiltonian. Therefore, we conjecture that Hamilto-
nian PT-symmetric systems can have only symmetric configuration.

A general N-dimensional PT-symmetric system, described by 
the Hamiltonian, can be constructed using the following rules, cf. 
Eqs. (5) and (21): (i) The i-th equation of motion that corresponds 
to the i-th Hamiltonian equations may have coordinates x j and 
accelerations ẍ j for all j = 1, ...N , and all but i-th dissipation/am-
plification terms ẋk , where k �= i. (ii) Coefficients of cross-coupling 
terms are symmetric, i.e. ci j = c ji , i �= j, while cii are independent 
of each other. Here ci j is a common notation for κi j , γi j and μi j . 
(iii) The basis coordinate in the i-th equation of motion is taken 
from one of k �= i (if N is even). When the basis coordinate in the 
i-th equation is fixed, say ki , all other terms ∼ ẋk , k �= ki , should be 
omitted. Rules (ii) and (iii) provide restrictions for possible config-
urations of PT-symmetric Hamiltonian systems.

4. Conclusion

In this paper, we have described different examples of PT-
symmetric systems. These examples provide physical intuition for 
understanding the properties of PT-symmetric systems. We give 
more general form of linear Hamiltonian systems with gain and 
loss that include coupling via both the coordinates and accelera-
tions.

We have found regions of instability for the generalized system 
of two coupled PT-symmetric oscillators. We have demonstrated 
that PT-symmetry can play stabilizing role, suppressing instability 
in a system.

A family of Hamiltonian functions for two nonlinear oscillators 
has been obtained. The possibility of Hamiltonian PT-symmetric 
systems in higher dimensions has been discussed. In particular, 
three coupled linear oscillators are analyzed. We found that it is 
impossible to make asymmetric Hamiltonian systems with bal-
anced gain and loss.
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