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The dynamics of the soliton in a self-attractive Bose-Einstein condensate under the
gravity are investigated. First, we apply the inverse scattering method, which gives
rise to equation of motion for the center-of-mass coordinate of the soliton. We analyze
the amplitude-frequency characteristic for nonlinear resonance. Applying the Krylov-
Bogoliubov method for the small parameters the dynamics of soliton on the phase plane
are considered. Hamiltonian chaos under the action of the gravity on the Poincaré map
are studied.
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1. Introduction

Soliton is a localized nonlinear wave that propagate without losing its shape due to

equilibrium between dispersion and nonlinearity effects.1 Solitons appear in such

physical systems as nonlinear optics, hydrodynamics and plasma waves.

The Bose-Einstein condensate (BEC) represents a giant matter-wave packet.

One of the most important aspects of matter-wave packets is that they are strongly

affected by gravity. In particular, they fall towards earth like a beam of ordinary

atoms. Since the matter-wave packet is a superposition of macroscopic de Broglie

waves of ultracold massive atoms, they are accelerated under gravity. This property

of matter-waves was employed in the design of an output coupler for the first atom

laser,2 and demonstration of coherence of a freely expanding and overlapping BEC.3

In physics, an atomic mirror is a media which reflects neutral atoms in the simi-

lar way as the conventional mirror reflects visible light. Atomic mirrors can be made

of electric fields or magnetic fields4 electromagnetic waves5 or just silicon wafer.6

In the last case, atoms are reflected by the attracting tails, of the van der Waals

attraction (quantum reflection).7 Such reflection is efficient when the normal com-

ponent of the wavenumber of the atoms is small or comparable to the effective depth

of the attraction potential. Roughly, the distance at which the potential becomes
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comparable to the kinetic energy of the atom. To reduce the normal component

most atomic mirrors are blazed at the grazing incidence. At grazing incidence, the

efficiency of the quantum reflection can be enhanced by a surface covered with

ridges.8,9

Recently quantum reflection of matter-waves from a solid surface has been the

subject of considerable interest both from the viewpoints of basic physics and BEC

applications. Specifically, matter-wave dynamics near the solid surface can be a

very sensitive probe for the Casimir force.10 Meantime, atom chips, where a BEC

is stored and manipulated near the solid substrate, open up new perspectives for

application.11 Coherent acceleration of matter-wave packet falling under gravity

and bouncing off a modulated magnetic mirror showed the possibility to realize the

Fermi acceleration with matter-waves.12

This work is aimed at investigation of the dynamics of a matter-wave soliton

near the solid surface under the action of a linear potential, originating from the

attractive force of gravity. The effect of a solid surface is modelled by a reflecting

delta-potential barrier. In real experiments such a barrier can be created by means

of a laser light far-off blue-detuned from atomic transitions. The underlying math-

ematical model is based on the one dimensional Gross-Pitaevskii equation (GPE)

for the BEC with a negative atomic scattering length, when the GPE supports

self-localized solution, the so called matter-wave soliton.

The paper is organized as follows. In Sec. 2, we describe interactions between the

matter-wave soliton and delta-potential barrier. In Sec. 3, the Krylov-Bogoliubov

method applied to the equation of motion for the center-of-mass coordinate of the

soliton. In Sec. 4, we consider the Poincaré map for nonlinear resonance. In con-

cluding Sec. 5, we summarize our results.

2. The Model and Governing Equation

The dynamics of a BEC in the mean-field approximation at zero temperature is

governed by the 3D GPE13,14

i~
∂Ψ

∂t
=

[

− ~
2

2m
∇2 + V (r) +

4π~2αsN

m
|Ψ|2

]

Ψ, (1)

where Ψ(r, t) is the macroscopic wave function of the condensate normalized so that
∫∞

−∞
|Ψ(r, t)|2dr = 1, N is the total number of atoms, m is the atomic mass, αs is

the s−wave scattering length (below we shall be concerned with an attractive BEC

for which αs < 0), and

V (r) =
m

2

[

ω2

xx
2 + ω2

⊥(y
2 + z2)

]

(2)

is the axially symmetric trapping potential which provides for tight-fitting confine-

ment in the transverse plane (y, z), as compared to free axial trapping, assuming

ω2
x/ω

2

⊥
≪ 1.
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When the transverse confinement is strong enough, so that the transverse os-

cillation quantum ~ω⊥, is much greater than the characteristic mean-field interac-

tion energy N |αs||Ψ|2, the dynamics is effectively one dimensional. In this case,

the 3D wave function may be effectively factorized as Ψ(x, y, z, t) = ψ(x, t)ϕ(y, z),

where ϕ(y, z) = exp
[

− (y2 + z2)/2l2
⊥

]

/
√
πl⊥ is the normalized ground state of

the 2D harmonic oscillator in the transverse direction, with l⊥ =
√

~/mω⊥ being

the corresponding transverse harmonic oscillator length. Substituting the factorized

expression into the 3D GPE (1), and integrating it over the transverse plane (y,z),

one derives the effective 1D GPE for an attractive BEC

i~
∂ψ

∂t
=

[

− ~
2

2m

∂2

∂x2
+ V (x)− q1D|ψ|2

]

ψ, (3)

where we have neglected the zero-point energy of the transverse motion ~ω⊥, and

defined the coefficient of the 1D nonlinearity, q1D = 4π|αs|~ω⊥

∫

∞

−∞
|ϕ(y, z)|4dydz =

2|αs|~ω⊥ and V (x) = mω2
xx

2/2 is the axial parabolic trap in the x direction.

Let us consider the case when the BEC falls under gravity force and bouncing off

from the modulated atomic mirror. Next, we shall assume that the axially parabolic

trap in the Eq. (3) can be changed by the linear potential and delta-potential barrier.

As a result, the 1D GPE, taking into account the gravity can be written in the

following form:

i~
∂ψ

∂t
=

[

− ~
2

2m

∂2

∂x2
+ V (x, t) − q1D|ψ|2

]

ψ. (4)

The potential V (x, t) for the 1D GPE (4) with the falling BEC under the gravity

has the following form:

V (x, t) = V1(x) + V2(x, t), (5)

V1(x) = kx, (6)

V2(x, t) = V0δ [x− f(t)] , (7)

where V1(x) is the lineal potential, k = mg, g is the acceleration of gravity, V2(x, t)

is the delta-potential barrier whose position is oscillating with the amplitude of

external force f0 and time dependence function given by f(t) = f0 sin(γt + φ), γ

and φ are the frequency and the phase of the amplitude of external force.

For the purposes of further simplification, let us rewrite Eq. (4) using dimen-

sionless variables: t → tω⊥/2, x → x/l⊥, l⊥ =
√

~/mω⊥, l → (l⊥/lg) , l
−3
g =

2m2g/~2, V0 → 2V0/(~ω⊥l⊥), and the rescaled wave function u→
√

2|αs|ψ,

iut + uxx + V (x, t)u + 2|u|2u = 0. (8)

It is well known, in the absence of the potential term V (x, t) = 0, Eq. (8) gives rise

to a commonly known family of soliton solutions,15

u(x, t) = 2iη
exp

[

−2iξx− 4i(ξ2 − η2)t− iφ0
]

cosh[2η(x− ζ)]
, (9)

ζ = −4ξt+ ζ0, (10)
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where η, ξ, ζ are, respectively, the amplitude, velocity, center-of-mass coordinate and

ζ0, φ0 are the initial coordinate and phase.

If we can consider the effects of the linear potential V1(x) and delta-potential

barrier V2(x, t) as perturbations for the soliton

iut + uxx + 2|u|2u = ǫR, (11)

ǫR = [V1(x) + V2(x, t)] u. (12)

Applying the conservation law of the field momentum dP/dt = 0 from the

soliton theory15 and taking into account the dP/dt = i
∫

∞

−∞
(utu

∗
x − uxu

∗
t )dx, we

finally get the following equation for the soliton center-of-mass coordinate, which

has the following form:

d2ζ

dt2
= −2k − 8V0η

2
sinh [2η(ζ − f(t))]

cosh3 [2η(ζ − f(t))]
. (13)

Introducing the new variable y = ζ − f(t), one obtains from Eq. (13) the following

equation

d2y

dt2
= −∂U

∂y
− f̈(t). (14)

This is the governing equation for a unit mass quasi-particle moving in the field of

anharmonic potential (Fig. 1)

U(y) = 2ky − 2V0η

cosh2(2ηy)
, (15)

and external force F (t) = −f̈(t) = f0γ
2 sin(γt+ φ).
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Fig. 1. The shape of the anharmonic potential given by Eq. (15) for the next parameter values:
k = −0.1, V0 = −1, η = 0.5, y0 = 1.78.
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Let us expand the potential U(y) by a series, according to the x = y− y0 degree

of deviation from the point of equilibrium, with fourth order of approximation

inclusively, then, the equation of motion (14) can be written as follows:

ẍ+ ω2x+ αx2 + βx3 = f0γ
2 sin(γt+ φ), (16)

with the coefficients

ω2 = 16V0η
3sech2 (2ηy0)

[

3sech2 (2ηy0)− 2
]

, (17)

α = 64V0η
4 tanh (2ηy0) sech

2 (2ηy0)
[

1− 3sech2 (2ηy0)
]

, (18)

β = (32/3)V0η
5sech6 (2ηy0) [26 cosh(4ηy0)− cosh(8ηy0)− 33] , (19)

where ω is the frequency of the quasi-particle, α and β are the anharminic coeffi-

cients, γ is the frequency of the external force and φ is the phase.
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Fig. 2. The dynamics of the center-of-mass coordinate of soliton. Numerical simulation of GPE
(8) (solid line) and governing equation (14) (dashed line). Left panel: The case when the delta-
potential barrier do not oscillating. Parameters are: V0 = −1, η = 0.5, y0 = 1.78, ω = 0.596, α =
−0.273, β = 0.081, a = 0.39, f0 = 0. Right panel: Delta-potential barrier as perturbation of the
external force. Parameter values: γ = ω, f0 = 0.1 (beats).

It is interesting to consider the dynamics of the interaction between the soliton

and the oscillating surface in the proximity of the resonance, which is illustrated

in the Fig. 2. The left panel of Fig. 2, illustrates the cases when the interacting

surface does not oscillating, the soliton oscillates harmonically with the period T =

2π/ω
[

1 + (5a2/12ω4 − 3β/8ω2)a2 + o(a2)
]

, as described in Ref. 18. Thus, near a

position of stable equilibrium, a system executes harmonic oscillations. As can be

seen in the right panel of Fig. 2, the dependence of the amplitude a of the forced

oscillations on the frequency of the external force has the characteristic resonance

shape: The nearer the frequency of the external force to the natural frequency ω,

the more the external force rocks the system. The phase φ of the forced oscillations

undergoes a jump of −π as γ passes thought the resonance frequency ω. When γ

is near ω, beats are observed, i. e., the amplitude of the quasi-particle alternately
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waxes, when the relation of the phases of the quasi-particle and the external force

is such that the external force rocks the quasi-particle, communicating energy to it

and wanes, when the relation between the phases changes in such a way that the

external force brakes the quasi-particle. The closer frequencies γ and ω, the more

slowly the phase relation changes and the larger the period of the beats. As γ → ω,

the period of the beats approaches infinity.

In order to estimate the actual values of the time and space units, we shall

provide the experimental parameters from Ref. 16. The current experiment considers

a single soliton of the lithium condensate. The s−wave scattering length, at the value

of the magnetic field B = 425 G (which was used to make the atomic interaction

attractive, via Feshbach resonance), was as = −0.21 nm. With the mass of a 7Li

atom, m = 11.65 × 10−27 kg, we have the following time and space units: ω−1
x ≃

3×10−3 s, l⊥ =
√

~/mω⊥ ≃ 12 µm, the trap’s aspect ratio being ωx/ω⊥ ≃ 7×10−2.

3. The Dynamics in the Potential Field

The case of a small nonlinearity turns out to be more complicated, strange though

it may seem, if, perhaps, a more interesting one, as is demonstrated by a curious

example in Ref. 17. When the anharmonic terms in forced oscillations of a sys-

tem are taken into account, the phenomena of resonance acquire new properties.

Let γ = ω + ∆, with small ∆, i. e. γ be the resonance value. Strictly speaking,

when nonlinear terms are included in the equation of the free oscillations, the term

higher order in the amplitude of external force (such as occur if it depends on the

displacement x) should also be included. We shall omit these terms merely to sim-

plify the formulae, i. e. they do not affect the qualitative results. As well known,18

in the linear approximation, the amplitude a is given near resonance, as a func-

tion of the amplitude f0 and frequency γ of the external force, which we write as

a2ε2 = f2
0
/4ω2. The nonlinearity of the oscillations results in the appearance of an

amplitude dependence of the eigenfrequency, which we write as ω+(3β/8ω)a2. Ac-

cordingly, we replace ω by ω+(3β/8ω)a2 (or, more precisely, in the small difference

γ − ω). With ∆ = γ − ω, the resulting equations is

a2
(

∆− 3β

8ω
a2
)2

=
f2
0

4ω2
. (20)

Eq. (20) is a cubic equation in a2, and its real roots give the amplitude of

the external forced oscillations. Let us consider how this amplitude depends on the

frequency of the external force for a given amplitude f0 of that force. As f0 increases,

the curve changes its shape, though at first it retains its single maximum, which

moves to positive ∆ if 3β/8ω > 0. At this stage only one of the three roots of Eq.

(20) is real. When f0 reaches a certain value fth (to be determined below), however,

the nature of the curve changes. For all f0 > fth there is a range of frequencies

in which Eq. (20) has three real roots. In the absence of friction, the damping

coefficient is zero. Consequently the Fig. 3 indicates that in our case the damping
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coefficient, which affects the knee of the curve, is zero leading to the branches of

the amplitude-frequency characteristic receding into infinity.
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Resonance detuning, ∆

Fig. 3. Amplitude-frequency characteristic for nonlinear resonance at ω = 0.596, β = 0.081, f0 =
0.55.

It is widely known that nonlinear oscillating systems with weakly nonlinearity

can be studied by the perturbation theory methods. Let us consider the dynamics

of the soliton in one dimension, and writing the Eq. (16) in the form:

ẍ+ x = εQ(x, ντ), (21)

where εQ(x, ντ) = −δx2−λx3+χ sin(ντ) is the periodic function with respect to ντ

with period 2π, ẋ = dx/dτ, τ = ωt, δ = α/ω2, λ = β/ω2, χ = f0ν
2, ν = γ/ω are the

dimensionless variables, ε is the small positive parameter, indicating the smallness

of the function εQ(x, ντ) with regard to the linear term (the order of smallness of

the terms in this equation is determined, so that with ε → 0 there is the case for

linear harmonic oscillations). In this case, we are considering the main resonance,

i. e. ν = 1. Higher order resonance appear when ω ≈ (n/r)γ, where n and r are

integers. Taking into account the smallness of nonlinear terms (x≪ 1) with regard

to the linear terms for solving Eq. (21) in zero-order approximation x(τ) can be

chosen as19:

x(τ) = b(τ) cos [σ(τ)] , (22)

where σ(τ) = ντ+θ(τ) and b, θ are slowly varying functions of τ . Using the Krylov-

Bogoliubov method (KBM) for the small parameters19 it is possible to obtain the

following coupled equations for b and θ:

db

dτ
= − χ

2ν
cos θ, (23)

dθ

dτ
=

ρ

2ν
+

3µb2

8ν
+

χ

2νb
sin θ, (24)
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where ρ = 1− ν2, ρ << 1, µ = λ
[

1− 10δ2/(9λ)
]

.

The equations (23)-(24) can be transformed into Hamiltonian form by changing

the new variable b =
√
p. The Hamilton’s equations are dp/dt = −∂H/∂θ, dθ/dt =

∂H/∂p, with Hamiltonian H = (χ
√
p/ν) sin θ+ ρp/(2ν)+ 3µp2/(16ν). Hamiltonian

is conserved quantity, i. e. H is the integral of motion for system (23)-(24). Phase

trajectories corresponding to different values of H at fixed χ and ρ are shown in

Fig. 4. From qualitative analysis of the system (23)-(24) it can be revealed that

there exists a separatrix H = 0, which separates finite trajectories corresponding

to nonlinear resonances from infinite ones. Figure 4 illustrates the quasi-particle

motion on the phase plane at threshold Hamiltonian Hth = 0.33 corresponds to

the separatrix. When the value of Hamiltonian is above threshold, i. e. H = 0.4,

then we observe the quasi-particle can leave the potential well, performing nonlinear

oscillations.

-1 0 1 2 3 4
0,0

0,2

0,4

0,6

0,8

1,0

1,2

H=0.08
\

H=0.22
\
H=0.31
\

/

/
H

 t h
=0.33

H=0.40

b

θ

Fig. 4. The phase trajectories for system (23)-(24). The curve for Hth = 0.33 corresponds to the
separatrix; the curve for H = 0.4 corresponds to the drift trajectory. Parameters are: χ = 0.1, ν =
1, ρ = 0, µ = −0.423.

4. The Dynamics on the Poincaré Map

In this section, we will describe the criterion of chaotic oscillations in the problem

of quasi-particle motion in the potential field U(y) under the action of periodic

force F (t) (see section 1). The force, which leads to such kind of the motion, is

potential. It is known,20,21 that after a transient process there is a steady state in

the system (16), i. e. x(t) ∼ a cos(γt+ϑ0), where a and ϑ0 are amplitude and initial

phase of oscillations respectively. One can obtain by Lindstedt method18,22 the

relation between α, β, γ, ω and amplitude a: F (α, β, γ, ω, a) = f0, where F is some

function. This relation may be considered as an equation for threshold amplitude
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f0th. As such, substituting this solution to Eq. (16) and equating the coefficients of

trigonometric functions we finally obtain the following condition for breaking of the

bound state:

f0 ≥ f0th = ath

{

[

(ω/γ)
2 − 1 + 3βa2

th
/4γ2

]2

+ (3/4)
(

αath/ωγ
2
)2

}

. (25)

This criterion is determine the transition boundary from periodic motion to the

chaotic one. It is important to draw a line between the systems of the damped

oscillations and the ones without such. In the systems without the damped oscilla-

tions or weakly damped oscillations the Poincaré map of the chaotic motion often

has a form of disordered clusters of points on the Poincaré map. Such motions are

called stochastic. Under the action of external force near trajectories with the pe-
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Fig. 5. The Poincaré map of Eq. (16). Left panel: The set of points 1 corresponds to the quasi-
periodic motion with the next parameters: ω = 0.596, α = −0.273, β = 0.081, f0 = 0.45. Right
panel: The set of points 2 corresponds to the chaotic motion and going away to +∞ with f0th =
0.55.

riod T = nText, where Text = 2π/ω and n is integer, nonlinear resonance occurs.23

Figure 5 illustrates the Poincaré map, as can be seen in the left panel, the set of

points 1 represents quasi-periodical motion, the separatrix and stationary points of

the Poincaré map appear due to nonlinear resonance. The width of the separatrix of

the nonlinear resonance increases with growing of f0, and at some values of f0 the

overlap of neighboring resonances occurs. In Fig. 5, we show that if the amplitude

of the external force changes from f0 = 0.45 to f0 = 0.5408, then the quasi-periodic

motion of the quasi-particle occurs. As can be seen in the right panel of Fig. 5, the

chaotic motion of the quasi-particle occurs as the value of the amplitude of the ex-

ternal force approaches the threshold value of f0th = 0.55. This threshold amplitude

separates the quasi-periodic motion from the chaotic motion of the quasi-particle.

The set of points 2 represents chaotic motion of the quasi-particle. As a result,

the motion of the quasi-particle with the threshold amplitude on the Poincaré map

becomes random, i. e. Hamiltonian chaos appears in the system.23,24



November 25, 2014 1:33 WSPC/INSTRUCTION FILE IJMPB

10 Kh. P. Khamrakulov

The typical picture of escape of the quasi-particle from the potential well under

the action of resonance force is shown in the Fig. 6. On the other hand, the quasi-

particle leaves the potential well when its kinetic energy becomes comparable with

the value corresponding to the difference between the potential well bottom and

the separatrix. When the amplitude of the external force reaches its threshold,

the quasi-particle accelerates to the boundary to leave the potential well. Figure 6

illustrates the mean-first passage time25 (MFPT) of the quasi-particle, as a result

of numerical integration of governing equation (14) at f0th = 0.55.
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Fig. 6. The result of numerical integration of Eq. (14) for the next parameters: V0 = −1, η =
0.5, y0 = 1.788, ω = 0.596, α = −0.273, β = 0.081, f0th = 0.55.

5. Conclusion

We have studied the nonlinear effect the matter-wave soliton interacting with the

delta-potential barrier by means of nonlinear mechanics and numerical simulations.

The Krylov-Bogoliubov method provides a framework to understand the dynamics

of the quasi-particle on the phase plane. Effects of nonlinear resonances, are studied

by perturbation theory. By applying the Poincaré map, we showed as the amplitude

of the external force approaches to the threshold value, a Hamiltonian chaos can

be observed in the system. The developed model predicts that the quasi-particle,

being on the bottom of the potential well, begins to scatter through resonances

and escapes the potential well, increasing stochastically its energy. The results can

be useful in development of new methods aimed at the delta-potential barrier by

scattering solitons on them.

Two related physical phenomena have recently been observed: quantum states

of ultra-cold neutrons in the gravitational field above a flat mirror, and quantum

states of cold neutrons in an effective centrifugal potential in the vicinity of a concave



November 25, 2014 1:33 WSPC/INSTRUCTION FILE IJMPB

Regular and Chaotic Dynamics of a Matter-Wave Soliton Near the Atomic Mirror 11

mirror.26 Obtained results can be useful for experiments with ultra-cold neutrons

and ultra-cold quantum gases.
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