ВКЛАДЫ ВОЗБУЖДЕННЫХ ЯДЕР ⁶Li И ⁷Li В ОБРАЗОВАНИЕ СИСТЕМ ⁴He + ²H И ⁴He + ³H в ¹⁶О*p*-СОУДАРЕНИЯХ ПРИ 3.25 *А* ГэВ/*c*

© 2013 г. К. Олимов^{1)*}, В. В. Глаголев²⁾, К. Г. Гуламов¹⁾, С. Л. Лутпуллаев¹⁾, А. Р. Курбанов¹⁾, А. К. Олимов¹⁾, В. И. Петров¹⁾, А. А. Юлдашев¹⁾

Поступила в редакцию 27.11.2012 г.; после доработки 07.02.2013 г.

Представлены новые экспериментальные данные по сечениям выхода возбужденных ядер ⁶Li^{*} и ⁷Li^{*} и их вкладам в образование легких двухядерных систем ⁴He + ²H и ⁴He + ³H в ¹⁶Op-соударениях при 3.25 A ГэB/c.

DOI: 10.7868/S0044002713070131

Исследование образования возбужденных легких ядер в адрон-ядерных соударениях при высоких энергиях позволяет получить информацию о многонуклонных системах, участвующих в процессах фрагментации, а также о кластерной структуре как фрагментирующего ядра, так и промежуточных нестабильных ядер [1].

Ранее нами было изучено [2] образование многонуклонных систем с массовыми числами A = 6, 7 и ядер ⁶Li, ⁷Li и ⁷Be в ¹⁶Op-соударениях при 3.25 A ГэB/c. Были определены сечения выхода этих систем и ядер, а также изучены корреляции с образованием легких фрагментов с $A \leq 3$. В этих процессах было установлено доминирование каналов с образованием α -частиц.

В настоящей работе мы изучили вклад возбужденных ядер ⁶Li^{*} и ⁷Li^{*} в каналы образования легких двухядерных систем ⁴He + ²H и ⁴He + ³H в ¹⁶Op-соударениях при 3.25 *А* ГэB/*c*.

Экспериментальный материал был получен с помощью 1-м водородной пузырьковой камеры ЛВЭ ОИЯИ, облученной ядрами кислорода с импульсом $3.25 \ A \ \Gamma$ эВ/c, на Дубненском синхрофазотроне и состоит из 8712 полностью измеренных неупругих 16 Ор-событий. Для более надежной идентификации фрагментов по массе рассматривались события, в которых длина треков фрагментов в рабочем объеме камеры составляла не

менее 30 см, что обеспечивает высокую точность импульсных измерений. При определении сечения выходов возбужденных ядер ⁶Li^{*}, ⁷Li^{*} учитывались потери продуктов их распадов – ²H, ³H и ⁴He за счет взаимодействий с рабочей жидкостью камеры на длине $L \leq 30$ см. Методические вопросы получения экспериментальных данных изложены в работах [3–6]. Двухзарядные фрагменты с импульсами p > 10.75 ГэB/c были отнесены к ядрам ⁴He. Однозарядные фрагменты в импульсном интервале $4.75 \leq p \leq 7.75$ ГэB/c относились к ²H, а с p > 7.75 ГэB/ $c - \kappa$ ³H.

Сечения выхода возбужденных ядер ⁶Li* и ⁷Li* определялись на основе анализа спектров энергии возбуждений систем ⁴He + ²H и ⁴He + ³H в полу-инклюзивных реакциях

$${}^{16}\mathrm{O} + p \to m^4\mathrm{He} + n^2\mathrm{H} + x, \tag{1}$$

$${}^{16}\text{O} + p \to m^4\text{He} + n^3\text{H} + x.$$
 (2)

Здесь *т* означает число α -частиц (m = 1-3); n числа ядер дейтронов и трития (n = 1-3); x любые экспериментально наблюдаемые частицы и фрагменты, типы и число которых обусловлены законами сохранения барионного и электрического зарядов. Определение сечений выхода возбужденных ядер ⁶Li* и ⁷Li* основано на вычитательной процедуре экспериментальных и фоновых спектров. В рассматриваемом случае фон получен перемешиванием рассматриваемых частиц из разных событий с учетом их топологий по числу α -частиц.

Согласно [7] ядра ⁶Li имеют три возбужденных состояния с распадной модой на α-частицу

¹⁾Физико-технический институт НПО "Физика–Солнце" АН РУз, Ташкент, Узбекистан.

²⁾Объединенный институт ядерных исследований, Дубна, Россия.

^{*}E-mail: olimov@uzsci.net

Рис. 1. Распределение по энергиям возбуждений E^* системы $\alpha + d$ в ¹⁶О*p*-соударениях при 3.25 *A* ГэВ/*c*. Сплошная кривая — фоновое распределение.

Рис. 2. То же, что рис. 1, но для системы $\alpha + t$.

и дейтрон: ⁶Li(2.19) $\rightarrow \gamma + d + \alpha$, ⁶Li(4.31) $\rightarrow \gamma + d + \alpha$ и ⁶Li(5.65) $\rightarrow d + \alpha$ (в скобках приведены уровни возбуждения в МэВ), а ядра ⁷Li – восемь возбужденных состояний с распадом на α -частицу и тритий: ⁷Li(4.63) $\rightarrow t + \alpha$, ⁷Li(6.54) $\rightarrow t + \alpha$, ⁷Li(7.47) $\rightarrow n + t + \alpha$, ⁷Li(9.6) $\rightarrow \gamma + n + t + \alpha$, ⁷Li(10.8) $\rightarrow \gamma + n + t + \alpha$, ⁷Li(16.2) $\rightarrow \gamma + t + \alpha$, ⁷Li(21.5) $\rightarrow \gamma + t + \alpha$, ⁷Li(23.5) $\rightarrow \gamma + t + \alpha$.

Среднее значение абсолютной ошибки в определении энергии возбуждения $E^* = M_{12} - M_1 - M_2$ рассматриваемых двухядерных систем (где M_{12} — эффективная масса ядер 1 и 2, а M_1 и M_2 их массы) во всем интервале изменения E^* составляет $\langle \Delta E^* \rangle = 7.5$ МэВ. В связи с этим экспериментальные и фоновые распределения по энергиям возбуждений рассматриваемых систем построены с шагом в 10 МэВ, так на рис. 1 показаны соответствующие распределения для системы $\alpha + d$, а на рис. $2 - для \alpha + t$.

Из приведенных данных по уровням возбуждения следует, что для ядра ⁶Li* в экспериментальном спектре E^* системы $\alpha + d$ они дают вклад в области <10 МэВ. Поэтому нормировка фонового спектра на экспериментальный произведена в области $E^*_{\alpha d} > 10$ МэВ. Как видно из рис. 1, фоновое распределение в этой области энергии возбуждения хорошо описывает экспериментальный спектр. Избыток числа комбинаций в области $E^*_{\alpha d} < 10$ МэВ составляет 143, что соответствует сечению выхода возбужденного ядра ⁶Li*, т.е. системы $\alpha + d$, 7.4 ± 0.6 мбн.

На рис. 2 приведены экспериментальное и фоновое распределения по энергиям возбуждений системы $\alpha + t$. В данном случае нормировка фонового распределения на экспериментальный спектр произведена в области $E_{\alpha d}^* > 30$ МэВ, что соответствует приведенным выше уровням возбуждения ядра ⁷Li^{*}. Видно, что фоновое распределение хорошо описывает экспериментальный спектр в этой области. Избыток числа комбинаций пар $\alpha +$ + t в области $E_{\alpha d}^* < 30$ МэВ составляет 76, что соответствует сечению выхода возбужденного ядра ⁷Li^{*}, т.е. системы $\alpha + t$, 4.0 \pm 0.5 мбн.

Таким образом, можно заключить, что вклад возбужденных ядер ${}^{6}\text{Li}^{*}$ и ${}^{7}\text{Li}^{*}$ в сечение образования α -частиц составляет 11.4 ± 0.8 мбн, а вклады в сечения выхода ядер дейтрона и трития составляют 7.4 ± 0.6 и 4.0 ± 0.5 мбн соответственно.

СПИСОК ЛИТЕРАТУРЫ

- П И. Зарубин, Сообщение ОИЯИ № Р1-201075 (Дубна, 2010).
- К. Олимов, А. Курбанов, С. Л. Лутпуллаев и др., ЯФ 72, 636 (2009) [Phys. Atom. Nucl. 72, 596 (2009)].
- В. В. Глаголев и др., Сообщение ОИЯИ № Р1-89-218 (Дубна, 1989); В. Вислицкий и др., Сообщение ОИЯИ № Р1-90-306 (Дубна, 1990); Б. У. Амеева и др., Сообщение ОИЯИ № Р1-91-545 (Дубна, 1991).
- В. В. Глаголев, К. Г. Гуламов, М. Ю. Кратенко и др., Письма в ЖЭТФ 58, 497 (1993) [JETP Lett. 58, 497 (1993)]; V. V. Glagolev, К. G. Gulamov, V. D. Lipin, *et al.*, Eur. Phys. J. A 11, 285 (2001).
- В. В. Глаголев, К. Г. Гуламов, М. Ю. Кратенко и др., Письма в ЖЭТФ 59, 316 (1994) [JETP Lett. 59, 336 (1994)].
- В. В. Глаголев, К. Г. Гуламов, М. Ю. Кратенко и др., ЯФ 58, 2005 (1995) [Phys. Atom. Nucl. 58, 1896 (1995)].
- 7. F. Ajzenberg-Selove, Nucl. Phys. A 490, 1(1988).

ЯДЕРНАЯ ФИЗИКА том 76 № 7 2013

CONTRIBUTIONS OF ⁶Li AND ⁷Li EXCITED NUCLEUS IN FORMATION OF SYSTEMS ⁴He + ²H AND ⁴He + ³H IN ¹⁶Op-COLLISIONS AT 3.25 A GeV/c

K. Olimov, V. V. Glagolev, K. G. Gulamov, S. L. Lutpullaev, A. R. Kurbanov, A. K. Olimov, V. I. Petrov, A. A. Yuldashev

New experimental data are presented on cross sections of the yield of the excited nuclei ⁶Li^{*} and ⁷Li^{*} and to their contributions to formation of two-nucleus systems ⁴He + ²H and ⁴He + ³H in ¹⁶Op collissions at 3.25 A GeV/c.