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Normal mode oscillations of a nonlocal composite matter wave soliton
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The existence of stable bound states of three solitons in a Bose-Einstein condensate with nonlocal interactions
is demonstrated by means of the variational approach (VA) and numerical simulations. The potential of
interaction between solitons derived from VA is shown to be of molecular type, i.e., attractive at long distances
and repulsive at short distances. Normal modes of a three-soliton molecule are investigated by computing
small amplitude oscillations of individual solitons near their equilibrium positions. Symmetric and asymmetric
stretched states of the molecule are prepared and used as initial conditions in numerical simulations of the
nonlocal Gross-Pitaevskii equation. As opposed to usual triatomic molecules, we find that the frequency of
the asymmetric mode of a three-soliton molecule is smaller than the one of the symmetric mode. Possible
experimental settings for the observation of these results are briefly discussed.
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I. INTRODUCTION

The interaction between solitons and formation of their
bound states has been the subject of long-standing interest
in the physics of nonlinear waves. Some features of soliton
interactions, which were theoretically predicted long ago,
are finding confirmation in present-day experiments [1,2].
The experimental demonstration of stable two- and three-
soliton complexes, so-called soliton molecules, in dispersion-
managed optical fibers [3–5] and revealing their possibilities
for advanced optical telecommunications [6], has been no-
table progress in this direction. Soliton interactions are im-
portant from the viewpoints of both fundamental physics and
practical applications. Motivation for optical communications
has led to the discovery of soliton interactions in fibers in early
research on optical solitons [7]. For example, it is known that
in soliton-based fiber-optic communication lines [8–10] the
interaction of copropagating solitons can reduce the overall
performance of the system.

Another physical medium, where solitons can exist, is
the Bose-Einstein condensate (BEC) of a diluted atomic gas.
Experimental and theoretical research on solitons in BEC
has been reported in many publications (see review articles
[11–13]). The majority of papers are devoted to properties
of single solitons and soliton trains. Evidence on the inter-
actions between matter-wave solitons was inferred from the
behavior of neighboring solitons, oscillating in a quasi-one-
dimensional (quasi-1D) harmonic trap [2,14]. Collective dy-
namics of a chain of solitons, confined by external potential, in
the adiabatic limit has been investigated in Ref. [15]. Similar
phenomena in two-component BEC were studied in Ref. [16].
Regimes to produce bound states of matter-wave solitons from
their collisions were found in Ref. [17]. It should be noted
that systematic investigation of the interaction process of just
two or three solitons in BEC requires precise production and
manipulation techniques, which is being developed nowadays
[18–20].

An important fact to be stressed here is that in the mean-
field description of BEC, in terms of the Gross-Pitaevskii
equation (GPE) with usual contact atomic interactions, soli-
tons cannot form stable bound states with finite binding
energy. The interaction force between them depends on the
phase difference and can be either attractive or repulsive, and
their interaction potential is not of molecular type. Potential
curves for two colliding nonlinear Schrödinger solitons were
calculated in Ref. [21]. Soliton complexes in this model, there-
fore, do not feature a fixed equilibrium distance, analogous
to the bond length of atomic molecules. In this respect, it is
worth mentioning that a breather consisting of two equal and
in-phase solitons, periodically passing through each other, as
predicted by standard nonlinear Schrödinger equation (NLSE)
with focusing cubic nonlinearity, has not been found in exper-
iments [7]. The reason is that when the two solitons merge,
higher order nonlinear phenomena come into play, which are
not captured by the standard NLSE.

The situation is different in BEC with long-range dipole-
dipole atomic interactions. In qualitative terms, one can say
that in dipolar BEC the atoms within one soliton can directly
interact with atoms inside another soliton, so that combined
dipolar and usual phase-dependent interactions of solitons
may open the way toward formation of true matter-wave soli-
ton molecules. The existence of stable bound states of bright
matter-wave solitons in dipolar BEC, where solitons attract
each other at long distances and repel at short distances, has
been theoretically predicted in several papers. Specifically,
soliton bound states in a stack of quasi-1D and quasi-2D
traps were reported in Refs. [22] and [23], respectively. In
these models, individual solitons, forming the bound state,
reside in separate stacks. Existence of bright solitons and
dark-soliton pairs in a dipolar Tonks-Girardeau gas was in-
vestigated in Ref. [24]. Numerical analysis of soliton bound
states in quasi-2D and 3D dipolar BEC were also reported
in Refs. [25,26]. Formation of bound states of solitons and
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their fusion resulting from collision of dipolar solitons have
been investigated in Ref. [27]. The vibration spectrum of a
two-soliton molecule in dipolar BEC, confined to a single
quasi-1D trap, was studied in Ref. [28], while the poten-
tial of interaction, formation of two-soliton molecules, and
their binding energy in one-dimensional dipolar BEC were
studied by variational approach and numerical simulations in
Ref. [29]. Dark solitons in dipolar BEC, interacting with each
other via molecular-type potentials and capable of forming
stable bound states, were recently reported in Refs. [30,31].
Soliton bound states and clusters in nonlocal optical media
are also intensively investigated (for a recent review, see the
book [32]). Once a soliton molecule has been created, many
interesting phenomena, similar to those observed in molecular
physics, can be modeled with them.

Our main objective in this paper is to study the dynam-
ics and normal mode oscillations of three-soliton molecules,
which can exist in nonlocal media. To this end, we develop
a variational approach (VA) [33,34] to find the stationary
shape of a three-soliton molecule, reveal the character of the
interaction potential, and estimate the frequency of small-
amplitude oscillations of solitons near their equilibrium po-
sitions. VA stationary profiles of three-soliton molecules are
also found in very good agreement with the numerical ones
obtained from a self-consistent (SC) procedure [35] applied
to the GPE. To explore the molecular dynamics, we prepare
symmetric and asymmetric stretched states of the molecule
by imposing constant and nonuniform chirping of the ground-
state wave function, using them as initial conditions for the
GPE, and recording the positions of each soliton during their
time evolution, which constitute the basis of our numerical
experiments.

As a result, we show that when considered in proper co-
ordinates the GPE dynamics simplifies, displaying harmonic
oscillations which resemble the ones of normal modes of usual
triatomic linear molecules. In contrast to what is observed
in molecular physics, however, we find that the oscillation
frequency of the motion induced from a symmetric stretching
is always larger than the one induced from an asymmetric
stretching of the three-soliton molecule. We find that the
VA predictions for stationary three-soliton molecules and for
the symmetric oscillations of the molecule are in excellent
agreement with numerical GPE integrations. The VA, how-
ever, does not allow us to make predictions for asymmet-
ric oscillations due to the difficulty of finding suitable trial
functions for this case. Normal mode oscillations have also
been investigated for topological soliton bound states of the
sine-Gordon equation [36] and for the displaced dynamics of
binary BEC mixtures [37].

The paper is organized as follows. In Sec. II, we de-
velop the VA using the Gauss-Hermite trial function for a
three-soliton molecule and check its validity by comparing
its predictions with the results of numerical solution of the
governing nonlocal GPE. In Sec. III, we consider initially
deformed states suitable to excite internal mode oscillations
of the molecule and use them as initial conditions for nu-
merical integrations of the GPE. Results are then compared
with predictions of the VA analysis. In Sec. IV, we briefly
summarize our findings and discuss the generality of our
results with respect to other types of nonlocal interactions.

Possible experimental settings and areas of research where the
obtained results might be useful are also briefly discussed.

II. MODEL EQUATIONS AND VARIATIONAL ANALYSIS

The governing equation of our model is a 1D nonlocal
Gross-Pitaevskii equation, represented in normalized units as
follows:

i
∂ψ

∂t
+ 1

2

∂2ψ

∂x2
+ q|ψ |2ψ

+ gψ

∫ +∞

−∞
R(|x − ξ |) |ψ (ξ, t )|2dξ = 0, (1)

where ψ (x, t ) is the mean field wave function of the con-
densate and q and g are coefficients of nonlinearity, respon-
sible for the local contact and long-range nonlocal atomic
interactions, respectively. The wave function is normalized to
the number of atoms in the condensate N = ∫ +∞

−∞ |ψ (x)|2dx,
which is a conserved quantity of Eq. (1). Since the nonlocal
interaction is essential for the existence of soliton molecules
and molecular dynamics, we shall concentrate mainly on
the case q = 0 and discuss at the end that results may be
preserved also in the presence of contact interactions. We also
remark that in experiments it is possible to detune the cubic
nonlinearity to zero by means of Feschbach resonances [38].

The response function R(x) in Eq. (1) characterizes the de-
gree of nonlocality of the medium, which shows how strongly
the properties at a given location depend on the properties of
its neighborhood. For analytical convenience, we consider a
Gaussian function normalized to one

R(x) = 1√
2πw

exp

(
− x2

2w2

)
(2)

and show in the last section that similar results can be ob-
tained also for long-ranged response functions with algebraic,
instead of exponential, decay at large distances. The parameter
w in Eq. (2) designates the strength of nonlocality. At w → 0
the response function resembles the Dirac δ function. In this
case, the medium is called weakly nonlocal. In the opposite
case of large w, compared to the waist of the excitation, the
medium is called highly nonlocal. The response function for
a dipolar BEC, confined to quasi-1D trap, was derived in
Ref. [39].

For three-soliton bound states, we can employ the vari-
ational approach similar to that developed in Refs. [28,29].
As a suitable trial function, we use the second Gauss-Hermite
function

ψ (x, t ) = A

(
2
x2

a2
− 1

)
exp

[
− x2

2a2
+ ibx2 + iφ

]
, (3)

where the variational parameters A(t ), a(t ), b(t ), φ(t ) mean
amplitude, width, chirp, and phase, respectively. It should
be noted that this waveform can be modeled by three Gaus-
sian functions, arranged in antiphase configuration. When
the phase difference between adjacent solitons differs from
φ = π , stable bound state of three solitons does not emerge,
as we have found from numerical simulations.

The norm of the trial function, which is proportional to
reduced number of atoms, is N = 2A2a

√
π . To develop the
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VA, we note that Eq. (1) can be obtained from the Lagrangian
density:

L = i

2
(ψψ∗

t − ψ∗ψt ) + 1

2
|ψx |2 − 1

2
q|ψ |4

−1

2
g|ψ (x, t )|2

∫ ∞

−∞
R(x − ξ )|ψ (ξ, t )|2dξ. (4)

Using the response function (2) and the ansatz in Eq. (3), we
evaluate the Lagrangian density (4). Subsequent integration
over the space variable L = ∫

Ldx yields the averaged La-
grangian

L

N
= 5

2
a2bt + φt + 5

4a2
+ 5 a2b2 − 41qN

128
√

2πa

− gN

2
√

2π
F (a,w), (5)

where

F (a,w) = w8 + 2w6a2 + 15
4 w4a4 + 7

4w2a6 + 41
64a8

(w2 + a2)
9
2

. (6)

From the Euler-Lagrange equations, d/dt (∂L/∂νt ) −
∂L/∂ν = 0 for the variational parameters ν → a, b, φ,

we obtain the following equation for a(t ):

att = 1

a3
− 41 q N

320
√

2πa2
+ g N

5
√

2π

∂F (a,w)

∂a
. (7)

This equation has formal analogy with the equation of
motion for a unit mass particle performing oscillations in the
anharmonic potential U (a):

U (a) = 1

2a2
− 41 q N

320
√

2π a
− g N

5
√

2π
F (a,w), (8)

depicted in the top panel of Fig. 1. The minimum of the
potential (8) at a = a0 corresponds to stationary width of the
molecule. The frequency of small-amplitude oscillations of
the molecule can be estimated from ω2

0 = ∂2U/∂a2|a→a0 . It
should be pointed out that the interaction potential between
solitons, given by Eq. (8), is of a molecular type; i.e., solitons
attract each other at long distance (∂U/∂a|a>a0 > 0) and repel
at short distance (∂U/∂a|a<a0 < 0), so that if a > a0 the dis-
tance between solitons tends to shrink and for a < a0 it tends
to expand. At the equilibrium distance, attractive and repulsive
forces balance each other, and the solitons remain motionless.
In the bottom panel of Fig. 1, we show the stationary wave
profile, found from the fixed point of Eq. (7), and compare
it with the exact wave profile numerically obtained from a
self-consistent (SC) procedure [35] applied to GPE (1). The
excellent agreement confirms the validity of the trial function
in Eq. (3) for our analytical calculations.

In analogy with the bond length of ordinary molecules
composed of neutral atoms, the distance between maxima of
two lateral solitons � = 2xm = √

10 a can be a characteristic
parameter of the soliton molecule.

To check the accuracy of the VA, we have periodically
modulated in time the strength of the nonlocal nonlinearity,
g(t ), and compared the results of Eq. (7) with numerical
solution of the GPE (1). In experiments with dipolar BEC,
such a dipolar nonlinearity management can be implemented
by means of rotating magnetic fields [40,41]. Alternatively,

q� � 1, q � 0, q � 1
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FIG. 1. Top panel: The potential U (a) for g = 10 and q =
0, ± 1. The inset shows the wave function of a three-soliton molecule
for q = 0. Bottom panel: The modulo square of the wave function,
according to VA for parameter values N = 6, w = 5, q = 0, g = 10,
A = 0.975, and a = 1.781. Dashed line represents the stationary
wave profile, constructed using the self-consistent procedure [35].
The two curves nearly coincide, which shows that Eq. (3) represents
a good trial function.

this can be achieved by slowly varying the polarization angle
θ , since g ∼ (1 − 3 cos2 θ ), where θ is the angle between
the long axis of the quasi-1D trap and the dipoles. Figure 2
illustrates the dynamics of the three-soliton molecule under

FIG. 2. Left panel: Stable propagation of the three-soliton
molecule with parameters predicted by VA. The density plot is ob-
tained by numerical solution of the GPE (1). Dashed lines correspond
to positions of maxima of the central and lateral solitons xm =
±√

5/2 a(t ), where the time-dependent parameter a(t ) is evaluated
from Eq. (7). Right panel: Periodic variation of the strength of
dipolar interactions g(t ) = g0[1 + ε sin(ω0t )] at resonant frequency
ω0 = 0.529 gives rise to vibration of lateral solitons with growing
amplitude, while the central soliton remains at origin due to the
symmetry. Parameter values: g0 = 10, ε = 0.1. Other parameters are
similar to Fig. 1.
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FIG. 3. The chemical potential as a function of the norm for three
values of the nonlocal coefficient and q = 0. The curves are drawn
according to VA Eqs. (11) and (12), while the symbols represent
the data, obtained by SC procedure [35]. It is evident that stronger
nonlocal interaction leads to more stable soliton molecules.

varying strength of nonlocal interaction. As can be seen from
this figure, the VA provides an accurate description of the
dynamics. The stability of localized solutions for nonlinear
wave equations can be examined by means of the Vakhitov-
Kolokolov (VK) criterion [42]. Following the usual procedure
[34], we look for stationary solutions of the GPE as ψ (x, t ) =
ϕ(x) exp(−iμt ), where μ denotes the chemical potential. The
time-independent GPE takes the form

μϕ + 1

2
ϕxx + qϕ3 + gϕ

∫ ∞

−∞
R(|x − z|)ϕ2(z)dz = 0, (9)

and the corresponding Lagrangian density is

L = 1

4

[
ϕ2

x − 2μϕ2 − qϕ4 − gϕ2
∫ ∞

−∞
R(|x − z|)ϕ2(z)dz

]
.

Performing further standard VA procedures with the ansatz

ϕ(x) = A

(
2

x2

a2
− 1

)
exp

(
− x2

2a2

)
, (10)

and using the response function (2), we get the following
expressions for the chemical potential and norm:

μ = −q N

a

123

256
√

2π
− g N√

2π

(
F + a

4

∂F

∂a

)
, (11)

N = 320
√

2π

a
(
41q − 64 g a2 ∂F

∂a

) , (12)

with the function F (a,w) given by Eq. (6). From the para-
metric plot μ(a) versus N (a) depicted in Fig. 3, one can see
that the condition dμ

dN
< 0 is always satisfied, which suggests,

according to VK criterion, the stability of the three-soliton
molecule for different values of the coefficient g. As expected,
the stronger attraction between solitons leads to more stability
of the molecule.

III. NUMERICAL RESULTS

To explore the molecular three-soliton dynamics, we need
to prepare initial symmetric and asymmetric stretched states
of the molecule and use them as initial conditions for numeri-
cal simulations of the GPE. However, stretching and releasing
the molecule in such a way that each soliton oscillates near its
equilibrium position, while the center of mass of the molecule
remains at rest (as usually presumed by the normal modes the-
ory), is a quite challenging problem. That is why we employ
another approach to excite symmetric and asymmetric modes
of the molecule, initially prepared in its ground state ψgs . In
particular, to excite only the symmetric mode of the molecule,
when the flanking solitons oscillate in antiphase, while the
central soliton does not move, we impose constant chirping
ψgse

ibx2
with a small chirp parameter b � 1, x ∈ [−∞,∞].

To excite both the symmetric and asymmetric modes, we
impose inhomogeneous chirping b = 0 for x < 0, and b 	= 0
for x > 0. It should be stressed that inhomogeneous chirping
induces vibration of all solitons, as well as motion of the entire
molecule, as shown in the right panel of Fig. 4. Below we
employ the reference frame, attached to the moving molecule.
In Fig. 5, we show the time evolution of the center-of-mass
positions of individual solitons of a three-soliton molecule,
excited as described above.

Since the resulting dynamics of the molecule is a su-
perposition of different modes, its periodic character is not
readily recognized in the actual center-of-mass coordinates
xi (see the lower left panel of Fig. 5). The periodic motions,
however, become evident if one introduces the coordinates ηi

defined as

η1(t ) = x1(t ) − x3(t ), η2(t ) = x1(t ) + x3(t ), (13)

where xi (t ) denote the displacement of the solitons with
respect to their equilibrium positions. Note that apart from
constant factors, these coordinates are just the same as the
normal mode coordinates of usual linear triatomic molecules.
Obviously, the model is valid for small-amplitude oscillations
of solitons when anharmonic effects are negligible.

In normal mode coordinates (13), the dynamics indeed
looks periodic, and the frequencies of the symmetric and
asymmetric modes are easily identified (see the right panels

FIG. 4. Excitation of the symmetric (left) and both the symmetric
and asymmetric (right) modes of the three-soliton molecule. The
symmetric mode has been excited via constant chirping ψgse

ibx2
with

b = 0.02. For the asymmetric mode b = 0 for x � 0 and b = 0.02
for x > 0.
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FIG. 5. Center-of-mass positions of individual solitons of a
three-soliton molecule, represented using actual (left panels) and
normal mode coordinates (right panels), according to numerical
solution of Eq. (1), in the reference frame, attached to the moving
molecule. Small deviations from pure sinusoidal character in the
asymmetric mode (blue dashed line) is due to the matter exchange
between solitons. The normal mode frequencies found from GPE
simulations are equal to ωs = 0.53, ωa = 0.35 for parameter values
fixed as in Fig. 1.

of Fig. 5). In this respect, the soliton molecule behaves similar
to the usual triatomic molecule. However, there is also a
significant difference between these two systems. It concerns
the flow of matter between solitons during the time evolution,
which is considered below.

The mass of each soliton (mi, i = 1, 2, 3) is proportional
to its norm

m1(t ) =
∫ z1(t )

−∞
ndx, m2(t ) =

∫ z2(t )

z1(t )
ndx, m3(t ) =

∫ ∞

z2(t )
ndx,

where n = |ψ (x, t )|2 is the density of the condensate accord-
ing to GPE (1) and z1(t ), z2(t ) are the left and right borders
of the middle soliton (where the field amplitude vanishes
ψ (x, t ) → 0).

Time dependence of these quantities implies that each
soliton of the molecule periodically expands, shrinks, and
moves. Evaluation of masses of solitons according to above
formulas shows that there is small exchange of matter between
solitons, when the vibrations of the molecule has been excited,
as illustrated in Fig. 6. The strength of interaction between
solitons, and therefore vibration frequency of soliton bound
states, depends on the number of atoms (expressed via norm).

The frequency of symmetric oscillations of the molecule
can be predicted by VA through the second derivative of the
potential in Eq. (8),

ωs =
√

∂2U/∂a2|a→a0 . (14)

We find that this expression leads to results that are in very
good agreement with GPE numerical calculations, as shown
below. For the frequency of asymmetric mode ωa , however,
analytic estimate is not available.
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FIG. 6. Excitation of the molecule’s vibrational modes leads
to small exchange of matter between solitons. The total mass is
always conserved, m1(t ) + m2(t ) + m3(t ) = const. When the sym-
metric mode has been excited (left), flanking solitons exchange equal
amount of matter with the central soliton. In this case, the curves for
m1(t ) and m3(t ) coincide. For the asymmetric mode (right), there
is a dynamic imbalance between masses of flanking solitons m1(t )
and m3(t ).

Quite interestingly, we find that the frequency of the asym-
metric mode is always smaller than the one of the symmetric
mode

ωs > ωa. (15)

It is well known that in usual triatomic molecules the opposite
relation holds. In Fig. 7, the symmetric and asymmetric mode
frequencies are plotted as a function of the norm. From this
figure, it is also evident that the numerical results for the
symmetric frequency are in excellent agreement with the
ones derived from the VA expression in Eq. (14). Similar
behaviors were found for generic parameter values and for
other initial conditions. It is not simple, however, to account
for the asymmetric oscillation frequency of the molecule by
means of the VA. In this respect, notice that the ansatz in
Eq. (3) does not allow any asymmetric dynamics.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.2
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N

Ω
s
,
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Symmetric mode, VA
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FIG. 7. Normal mode frequencies of the three-soliton molecule,
obtained by numerical solution of the GPE (1) with initial wave
forms, corresponding to different norms of the molecule. Validity
of the relation (15) is confirmed for all selected parameters. The
symmetric mode frequency is predicted by the VA expression in
Eq. (14) (red solid line), while for the asymmetric mode frequency
an analytic estimate is not available.
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IV. DISCUSSION AND CONCLUSIONS

Before closing this paper, we feel compelled to discuss
in more detail the feasibility of the above results for dipolar
BEC and possible experimental settings to verify the proposed
model. In this regard, the following remarks are in order.

A. About the response functions

First, for analytical convenience we have employed a nor-
malized Gaussian function for the kernel R(x) in Eq. (1)
which does not possess the required long-ranged algebraic
decay ∼ 1/x3 typical of dipolar interactions. On the other
hand, an expression for the dipolar response function for the
one-dimensional setting was derived in Ref. [39], involving
the special functions. This kernel, however, appears to be
quite complicated for analytical considerations. A more con-
venient kernel was proposed by introducing a cutoff parameter
δ [43]

R(x) = δ3

(x2 + δ2)3/2
. (16)

Equation (16) correctly describes the asymptotic behavior of
dipolar forces, decaying at long distances as ∼ 1/x3, and
unlike the response function of Ref. [39], does not feature
a cusp at the origin x = 0. A close similarity between the
two response functions for δ = π−1/2 was discussed and
illustrated in Ref. [43].

B. Comparison with dipolar model

We have checked that all the above results are qualita-
tively preserved when the calculations are performed with
physically more realistic kernel function (16). The VA results
follow from the same effective Lagrangian but with the last
term in Eq. (5) replaced by gNδ3/(8π )F̃ (a, δ), where F̃ (a, δ)
denotes a complicated function, involving modified Bessel
functions and omitted here for brevity.

In spite of bulky analytical expressions, it is possible to
solve the VA equations numerically and compare the results
with the governing GPE, involving the kernel function (16). In
Fig. 8, we show the stationary wave profile of a three-soliton
molecule and the potential curve, obtained using Eq. (16).

In Fig. 9, we illustrate the GPE and VA dynamics of a
three-soliton molecule under time periodic modulation of the
dipolar interaction. Comparison of Figs. 1 and 2, obtained us-
ing the Gaussian kernel Eq. (2), with Figs. 8 and 9, constructed
using the kernel Eq. (16), shows their qualitative similarity.
The same is true for other properties of a soliton molecule
discussed in Secs. III and IV. Thus, we conclude that the
above phenomena should be observable in a quasi-1D dipolar
BEC.

Second, in our numerical simulations we have neglected by
contact interactions, assuming the dipolar interactions to be
dominant. However, these results survive also in the presence
of contact atomic interactions. The dimensionless quantity,
characterizing the strength of dipole-dipole interactions with
respect to contact interactions, is given by

ε = μ0μ
2m

12πh̄2as

, (17)

FIG. 8. Top panel: The potential U (a) for g = 10 and q =
0, ± 1, constructed from VA equations, using the kernel function
(16). The inset shows the wave function of a three-soliton molecule
for q = 0. Bottom panel: The modulo square of the wave function,
according to VA for parameter values N = 6, δ = 4/

√
π , q = 0,

A = 1.78, and a = 0.53. Dashed line represents the stationary pro-
file, constructed using the self-consistent procedure [35].

where μ0 is the permeability of vacuum, μ,m are the mag-
netic dipole moment and mass of the atom, respectively, and
as is the s-wave scattering length, responsible for the contact

FIG. 9. Left panel: Stable propagation of the three-soliton
molecule with parameters predicted by VA for the kernel function
(16). The density plot is obtained by numerical solution of the GPE
(1). Dashed lines correspond to positions of maxima of the central
and lateral solitons xm = ±√

5/2 a(t ), where the time-dependent
parameter a(t ) is evaluated from VA. Right panel: Periodic variation
of the strength of dipolar interactions g(t ) = g0[1 + ε sin(ω0t )] at
resonant frequency ω0 = 5.619 gives rise to vibration of lateral
solitons with growing amplitude, while the central soliton remains
at origin due to the symmetry. Parameter values: g0 = 10, ε = 0.1.
Other parameters are similar to Fig. 8.
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interactions and expressed in units of Bohr radius a0. For
electric dipole moments, the formula is similar with replace-
ment μ0μ

2 → d2/ε0, where d is the electric dipole moment
of atoms and ε0 is the permittivity of vacuum. For the family
of dipolar BECs, the estimates are as follows: 52Cr, μ = 6 μB ,
as = 16 a0, εCr = 0.16; 164Dy, μ = 10 μB , as = 92 a0, εDy =
1.4; and 168Er, μ = 7 μB , as = 60 a0, εEr = 0.4. Comparing
these values of ε with that of the nondipolar condensate 87Rb
(μ = 1.0 μB , as = 0.7 a0, εRb = 0.007), we conclude that the
dipolar interactions in Cr, Dy, and Er dominantly contribute
to scattering properties of BEC. On the other hand, when the
objective is to observe the dipolar effects clearly, the contact
interactions can be reduced to zero by a magnetic or optical
Feshbach resonance technique [38]. In the experiments, the
setting considered in this paper could be implemented by
applying suitable optical or magnetic fields to create weakly
stretching potentials for the soliton molecule.

In conclusion, we have introduced a three-soliton molecule
which can exist in BEC with nonlocal atomic interactions
confined to quasi-1D traps. The stationary wave form, po-
tential of intersoliton interaction, the bond length, and some
other characteristic parameters of the three-soliton molecule
are obtained using the variational approach and confirmed
by numerical simulations of the nonlocal GPE. To explore
the normal mode dynamics of the three-soliton molecule, we
imposed constant and nonuniform chirping of the ground-
state wave function and used them as initial conditions in

numerical simulations of the nonlocal GPE. We have shown
that, contrary to usual triatomic molecules, the frequency of
the asymmetric mode of a three-soliton molecule is always
smaller than the one of the symmetric mode. Comparison of
the frequencies of small amplitude oscillations of individual
solitons, obtained from numerical solution of the nonlocal
GPE, showed a good agreement with the predictions of the
developed model. The results of the present work can be of
interest, e.g., in studies of oscillations of the dipolar BEC over
the surface trap, made of a superconductor material [44,45].
Normal modes of soliton molecules can be experimentally
measured also in dispersion-managed optical fibers, where
three-soliton molecules are already produced [4,5].
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