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The interaction between two bright solitons in a one-dimensional dipolar Bose-Einstein condensate (BEC) is
investigated, with the aim of finding the regimes where they form a stable bound state, known as the soliton
molecule. To study soliton interactions in BECs we employed a method similar to that used in experimental
investigation of the interaction between solitons in optical fibers. The idea consists in creating two solitons at
some spatial separation from each other at initial time t0 and then measuring the distance between them at a
later time t1 > t0. Depending on whether the distance between solitons has increased, decreased, or remained
unchanged, compared to its initial value at t0, we conclude that the soliton interaction was repulsive, attractive, or
neutral, respectively. We propose an experimentally viable method for estimating the binding energy of a soliton
molecule, based on its dissociation at critical soliton velocity. Our theoretical analysis is based on the variational
approach, which appears to be quite accurate in describing the properties of soliton molecules in dipolar BECs,
as reflected in the good agreement between the analytical and the numerical results.
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I. INTRODUCTION

The interaction of solitons has been a subject of great
interest right from the beginning of the early investigations [1].
New fundamental features of soliton interactions are still being
discovered; the existence of a phase-dependent spatial jump in
the trajectories of two colliding matter-wave solitons, reported
in a recent experiment [2], is just one example. Apart from
their scientific importance, soliton interactions have a practical
importance. For instance, interaction between optical solitons
sets the limit on the rate of information transfer in fiber-optic
communication systems [3]. Due to their important appli-
cations, soliton interactions have been extensively studied,
both theoretically and experimentally, in optical fibers [4–7],
photonic crystals [8], and plasmas [9]. Recent experimental
studies have shown that, in addition to interactions between
neighboring optical solitons in close proximity, there exists
a long-range interaction between them [10]. The generation
of spatially separated coherent matter-wave packets and their
subsequent interaction constitute the basic phenomena in the
operation of modern atomic interferometers [11] working
in the solitonic regime [12,13] where the fringe visibility
is significantly increased compared with an ordinary atomic
cloud, as demonstrated in [12].

Solitons have been experimentally observed in many
areas of physics, including Bose-Einstein condensates (BECs)
[14–16]. Experiments with solitons in BECs reported so far
have been concerned with the creation of solitons and study
of their collective dynamics. Regarding the type of interaction
between matter-wave solitons a conjecture was made based
on the behavior of neighboring solitons in a soliton train [17].
Meanwhile, it would be interesting to explore systematically
the interaction between two matter-wave solitons with varying
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spatial separations and relative phases. Recent progress in
controlled creation and manipulation of matter-wave soli-
tons in BECs [2,15,16] indicates that such experiments on
soliton interactions are now within the scope of the current
technology. A key role belongs to a minimally destructive
polarization phase-contrast imaging technique [18], which
allows one to make multiple imaes of the soliton pair during
a single experimental run, as reported recently with regard
to phase-dependent collision of two matter-wave solitons
[2]. An essentially new method reported in Ref. [16] for
controlled (i.e., deterministic in both soliton position and
momentum) creation of matter-wave bright solitons and soliton
pairs without the use of Feshbach resonances opens new
perspectives for the investigation of soliton interactions in
BECs with unprecedented accuracy.

Experimental realization of chromium BECs with long
range dipole-dipole atomic interactions [19] has opened a
new direction in the physics of ultracold quantum gases.
Subsequently two other species with strong dipolar interac-
tions, namely, dysprosium [20] and erbium [21], were Bose-
condensed. The principal difference of chromium condensates
from alkali-metal atom condensates is that 52Cr has the
large permanent magnetic dipole moment d = 6 μB , where
μB = e�/2me is the Bohr magneton. Since the dipole-dipole
force is proportional to the square of the magnetic moment, the
dipolar interaction in chromium condensates is a factor of 36
times stronger than in alkali-metal atom condensates, like 87Rb
(d = 1 μB). Similar arguments pertain also for other dipolar
quantum gases, 164Dy (d = 10 μB) and 168Er (d = 7 μB).

In this work we study, by means of variational approxima-
tion (VA) and numerical simulations, the interaction between
two bright solitons in a one-dimensional (1D) dipolar BEC.
We employ a strategy similar to that used in the experimental
investigation of interaction forces between fiber-optic solitons
[5,22]. Following that idea in numerical experiments we create
two bright solitons at some initial spatial separation, then give
the pair a chance to evolve for some period of time, and,
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finally, measure the distance between the solitons when the
evolution time has elapsed. Depending on whether the distance
between the solitons has increased, decreased, or remained
unchanged, compared to its initial value, we conclude that the
type of soliton interaction is repulsive, attractive, or neutral,
respectively.

There is a qualitative difference between solitons in dipolar
and those in nondipolar media. Specifically, two antiphase
solitons in a dipolar medium attract each other at a large
separation and repel at a short separation. Due to this property
they can form stable bound states with nonzero binding energy,
whereas in nondipolar media they always repel and never form
a stable bound state. The possibility of a molecular type of
interaction between solitons in a dipolar BEC moving in two
neighboring waveguides was shown in [23]. The existence of
stable multisoliton structures in a 2D dipolar BEC was also
reported in [24].

Our main objective in this work is to find the conditions
under which two interacting solitons in the same quasi-1D
waveguide form a stable bound state, which can be considered
a basic matter-wave soliton molecule. When a stable bound
state of two solitons has been realized, we characterize the
soliton molecule by its bond length and binding energy. Our
work distinguishes itself from other relevant publications in
that we use the VA with a Gauss-Hermite ansatz and ana-
lytically tractable function of nonlocality (response function),
which allows us to describe the essential features of soliton
molecules in a dipolar BEC. Moreover, we provide a detailed
comparison of predictions of VA with the results of numerical
simulations of the Gross-Pitaevskii equation (GPE).

The paper is organized as follows. In the next section
(Sec. II) we introduce the governing equation and develop
the VA for the dynamics of soliton molecules in a dipolar
BEC. In Sec. III we use an optimization procedure to
find the shape of a soliton molecule and validate the VA
by comparing the analytical predictions with the results of
numerical simulations. In Sec. IV we present such important
characteristics of a soliton molecule as its binding energy.
In Sec. V we reveal the character of soliton interactions
in a dipolar BEC using a method borrowed from the
field of fiber-optic solitons. In Sec. VI we summarize our
findings.

II. THE GOVERNING EQUATION AND VARIATIONAL
APPROACH

From the viewpoint of theoretical description, matter-wave
solitons in BECs and optical solitons in fibers are similar. The
mean-field GPE for the dynamics of BECs and the nonlinear
Schrödinger equation for propagation of optical solitons in
fibers have a formal analogy. The similarity of the basic
equations has been fruitful in transferring many ideas from
nonlinear optics to the field of matter waves [25]. In this paper
we transfer one more idea, concerning soliton interactions,
from the field of fiber optics into the field of BECs.

We consider the 1D GPE by taking into account both
local and nonlocal nonlinearities, which account for the usual
contact interactions between atoms, and long-range dipole-

dipole interactions [26,27],

i
∂ψ

∂t
+ 1

2

∂2ψ

∂x2
+ q|ψ |2ψ

+ gψ

∫ +∞

−∞
R(|x − ξ |) |ψ(ξ,t)|2dξ = 0, (1)

where q = as/|as0| is the coefficient of contact interactions,
controlled by the atomic s-wave scattering length as , with
as0 being its background value; g = ad/|as0| is the coefficient
of nonlinearity, responsible for the long-range dipolar atomic
interactions, expressed via the characteristic dipole length
ad = μ0d

2m/(12π�
2), with m and d being the mass and

magnetic dipole moment of atoms, respectively, oriented
along the x axis; and μ0 is the permeability of the vacuum.
Time and space are expressed in units of t0 = ω−1

⊥ and
l0 = √

�/(mω⊥), respectively, with ω⊥ being the frequency
of radial confinement. The wave function is re-scaled as
ψ = √

2|as0|� and normalized to the reduced number of
atoms in the condensate N = ∫ +∞

−∞ |ψ(x)|2dx, which is a
conserved quantity of Eq. (1). The following two models for
the kernel (nonlocal response functions) are relevant to dipolar
condensates confined to quasi-1D traps:

R1(x) = (1 + 2x2) exp(x2) erfc(|x|) − 2π−1/2|x|, (2)

R2(x) = δ3(x2 + δ2)−3/2. (3)

The former kernel was derived for the dipolar BEC using the
single-mode approximation [28], while the latter, containing
a cutoff parameter, δ, was proposed in Ref. [26] and is
more convenient for analytical treatment. Making use of the
matching conditions

R1(0) = R2(0) and
∫ ∞

−∞
R1(x)dx =

∫ ∞

−∞
R2(x)dx, (4)

which requires δ = π−1/2, one can take advantage of the
simplicity of R2(x) for the application of VA. The meaning of
δ is the effective size of the dipole. Actually, it takes the value
of the order of the transverse confinement length, which makes
the model 1D, and sets the unit length in Eq. (1). Therefore, the
choice of δ = π−1/2 ≈ 0.56 is quite reasonable. In the limit
x � δ, where dipole-dipole interaction effects dominate the
contact interaction effects, both response functions behave as
∼1/x3. This justifies the application of the kernel function
R2(x) for analytical treatment of dipolar effects in a BEC. By
comparing the graphics of these two response functions one
can be convinced that indeed R1(x) and R2(x) match very
closely [26].

The Lagrangian density generating Eq. (1) is

L = i

2
(ψψ∗

t − ψ∗ψt ) + 1

2
|ψx |2 − q

2
|ψ |4 − g

2
|ψ(x,t)|2

×
∫ ∞

−∞
R(x − ξ )|ψ(ξ,t)|2dξ. (5)

To study soliton interactions in a dipolar BEC we need to
develop the VA for a two-soliton molecule. To this end we
employ a Gauss-Hermite trial function, which was successful
in the description of soliton molecules in dispersion-managed
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FIG. 1. (Color online) Left: A molecular-type potential associated with VA, Eq. (10), for different strengths of the contact interaction.
Right: The shape of a two-soliton molecule in a pure dipolar BEC with N = 2, q = 0, g = 20 as predicted by VA with the trial function,
(6), for A = 3.538, a = 0.553, N = 1.876 [solid (red) line], predicted by two antiphase Gaussian functions with parameters given in Eq. (7)
[dashed (blue) line], and found from the numerical optimization procedure, applied to the GPE, (1) [dash-dotted (brown) line]. The minimum
of the effective potential U (a) is attained at a0 = 0.53, and the equilibrium distance between center-of-mass positions of pulses predicted by
Eq. (7) is 	0 = 4a0/

√
π 	 1.2, while the GPE optimization gives 	0 	 1.3.

optical fibers [29],

ψ(x,t) = A(t) x exp

[
− x2

2a(t)2
+ ib(t)x2 + iφ(t)

]
, (6)

where A(t), a(t), b(t), and φ(t) are variational parameters,
associated with the amplitude, width, chirp, and phase,
respectively. The norm N = ∫ |ψ(x)|2dx = A2a3√π/2 is
proportional to the number of atoms in the condensate. For
specified values of A and a, the waveform, (6), can be
well approximated by two antiphase Gaussian functions with
amplitude A0, width a0, and half-separation x0:

A0 = 2Aa√
π

e−2/π , a0 = πa

16
e4/π , x0 = 2a√

π
. (7)

Substitution of the ansatz, (6), and response function, (3), into
the Lagrangian density, (5), and subsequent integration over
the space variable x yield the averaged Lagrangian,

L

N
= 3

2
a2bt + φt + 3

4a2
+ 3a2b2 − 3 q N

8
√

2π a
− 3 g δ N

8
√

2 a

×
[
U

(
1

2
,0,z

)
− δ2

3a2
U

(
3

2
,1,z

)
+ δ4

4a4
U

(
5

2
,2,z

)]
,

(8)

where

U(a,b,z) = 1

�(a)

∫ ∞

0
e−zt ta−1(t + 1)b−a−1dt (9)

is the confluent hypergeometric function [30], and z =
δ2/(2a2).

The VA equation for the parameter a of the two-soliton
molecule, which is proportional to the separation between
solitons, can be derived from the Euler-Lagrange equations
d/dt(∂L/∂νt ) − ∂L/∂ν = 0 for variational parameters ν →
a,b,φ, using the averaged Lagrangian, (8):

att = 1

a3
− q N

4
√

2π a2
− gδ N

4
√

2a2

[
U

(
1

2
,0,z

)
− 3zU

(
3

2
,1,z

)

+ 7z2U
(

5

2
,2,z

)
− 5z3U

(
7

2
,3,z

)]
. (10)

The corresponding effective potential U (a) for the width is
depicted in Fig. 1 (left). The analytic form of the potential
U (a), which can be found by integrating the right-hand
side of Eq. (10), is rather complicated and we do not show
it here explicitly. The fixed point att = −∂U (a)/∂a = 0 of
this equation, a0, is associated with the stationary separation
between center-of-mass positions of two solitons constituting
the molecule 	0 = 2x0 = 4a0/

√
π . At a larger separation

(a > a0) the solitons attract each other (∂U/∂a > 0), and
at a smaller separation (a < a0) they repel (∂U/∂a < 0),
therefore the effective potential U (a) has a property of the
molecular type. Figure 1 (right) illustrates the shape of a
two-soliton molecule, as predicted by VA, by two antiphase
Gaussian functions with parameters given in Eq. (7), and by
the optimization procedure, applied to the GPE, (1), described
in the next subsection.

When solitons of the molecule are placed in their equi-
librium positions, they stay motionless, as shown in Fig. 2.
If solitons are slightly displaced and released, they perform
low-amplitude oscillations around their stationary separation.
The dynamics of the molecule strongly depends on the initial
phase difference between solitons. In particular, even a slight
deviation from the antiphase configuration leads to periodic
exchange of atoms between solitons. At larger deviations the
soliton molecule does not form.

The frequency of soliton oscillations near the equilibrium
state can be estimated from a linearized version of Eq. (10):

2
0 = 3

a4
0

− Nq

2
√

2πa3
0

δgN

4
√

2a3
0

×
[

− 15z2
0U

(
5

2
,0,z0

)
+ 21z2

0U
(

5

2
,1,z0

)

− 9z2
0U

(
5

2
,2,z0

)
+ 20z0U

(
3

2
, − 1,z0

)

− 28z0U
(

3

2
,0,z0

)
+13z0U

(
3

2
,1,z0

)
−2U

(
1

2
,0,z0

)]
.

(11)
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FIG. 2. (Color online) (a) Stable propagation of a two-soliton molecule composed of two antiphase (ϕ = π ) Gaussian pulses with parameters
A0 = 1.196, a0 = 0.394, placed at their equilibrium positions x0 = ±0.657. (b) When the solitons are slightly displaced (by 20%) from
equilibrium positions, they perform oscillations. The density plot |ψ |2 is obtained by numerical solution of the GPE, (1). The dashed line
corresponds to calculations according to the VA equation, (10), which shows increasing phase shift with respect to GPE. (c) Periodic exchange
of atoms between two solitons when the initial phase difference is slightly decreased.

For the period of oscillations near the stationary separation
we have TVA = 2π/0 	 1.54. The prediction of VA is in
qualitative agreement with the result of numerical simulation
of the GPE, TGPE 	 2.2 (see Fig. 2). In general, the VA
provides a fairly good description of the static and dynamic
properties of the soliton molecule, while its waveform remains
close to the selected trial function, (6). The agreement between
VA and GPE deteriorates at large separations between solitons,
close to the dissociation point, where the trial function cannot
be well approximated by two antiphase Gaussian functions.

III. IMPROVING THE SHAPE OF THE SOLITON
MOLECULE BY THE OPTIMIZATION PROCEDURE

The VA provides the approximate waveform of a soliton
molecule. When a trial function with parameters, defined by
the stationary solution of VA equation, is assigned as the
initial condition for the GPE, low-amplitude oscillations of the
molecule’s shape and separation between pulses are observed.
This implies that the soliton molecule is in its excited state.

For some precise parameter calculations, such as the
binding energy of soliton molecules, a true ground state should
be employed. In Ref. [31] an optimization strategy to find the
stationary shape of a soliton molecule in dispersion-managed
optical fibers was proposed. Below we extend this approach
to soliton molecules in a dipolar BEC. It is based on the
Nelder-Mead nonlinear optimization procedure [32], which
seeks to minimize an objective (or cost) function

f = 1

N0

∫ ∞

−∞
(|ψ(x,0)| − |ψ(x,t1)|)2 dx,

(12)

N0 =
∫ ∞

−∞
|ψ(x,0)|2 dx,

where

ψ(x,0) = A0

(
exp

[
− (x − x0)2

2a2
0

]
− exp

[
− (x + x0)2

2a2
0

])

(13)

is the initial waveform, composed of two antiphase Gaussian
functions, separated by a distance 2 x0, and ψ(x,t1) is the
result of evolution of ψ(x,0) for some period of time t =
t1, according to the GPE. The normalization factor N0 in
Eq. (12) is introduced to avoid trivial solutions, in particular,
corresponding to x0 = 0. In the general case minimization
of the objective function can be performed with respect to
variables a0 and x0, since the amplitude A0 is fixed by the
norm of the Gaussian. However, numerical experiments show
that VA-predicted values of a0 and A0 for a single soliton
are quite accurate, and minimization only with respect to
pulse separation x0 can produce the stationary state of the
molecule. The evolution time t1 can be estimated as a half-
period of oscillation for the molecule t1 = π/0. Although
the Nelder-Mead optimization procedure finds the minimum
of the objective function, (12), for Gaussian functions with
a broad range of parameters, the convergence rate can be
improved by selecting the initial waveform close to the
stationary state. The VA can provide a waveform which is
close to the stationary state. We find the stationary pulse
separation x0 and norm of the soliton molecule N from the
Nelder-Mead optimization procedure. The obtained results
were confirmed by an alternative method of Luus-Jaakola
[33,34]. Our preference for these optimization methods is
motivated by several of their advantages, such as the simplicity
of programming (since calculation of function derivatives
is not required), high convergence rate, and reliability and
effectiveness of locating the global minimum of the objective
function.

IV. INTERACTION POTENTIAL AND BINDING ENERGY
OF SOLITON MOLECULES

The binding energy of a soliton molecule Eb can be defined
as the amount of energy which is required for dissociation
of the molecule into two separate individual free solitons, far
away from each other. In numerical simulations using the GPE,
the process of dissociation can be implemented by assigning
an initial velocity to each soliton in opposite directions,
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FIG. 3. (Color online) Dynamics of the centers of masses of two
solitons, forming the molecule, when the two solitons are set in motion
at different velocities in opposite directions. When the velocity is
less than critical v < vcr = 0.91, solitons perform oscillations near
equilibrium positions. At critical velocity the molecule dissociates
into freely moving individual solitons [solid (red) lines].

ψ = ψ1e
ivx + ψ2e

−ivx . If the velocity is lower than some
critical value v < vcr, solitons perform oscillations around
their stationary positions; otherwise the molecule disintegrates
into individual solitons, traveling in opposite directions, as
illustrated in Fig. 3.

In a “particle in potential well” picture this situation
corresponds to the escape of the particle from the potential
well at the critical kinetic energy. The critical velocity
determines the binding energy of the molecule Eb ∼ v2

cr/2.
Figure 4 illustrates the potential of interactions between the
two solitons, normalized to the binding energy, as a function of
the distance between solitons in units of stationary separation
x0. To construct the potential U (x) we assign a velocity to
solitons and determine the maximal and minimal values of the
separation, which correspond to right and left classical turning
points of the oscillating particle in the potential well. Repeating
these calculations for velocities in the range v ∈ [0,vcr] we
construct the potential, shown at the left in Fig. 4. As expected,
the bigger norm N (or number of atoms) of the molecule
corresponds to stronger potential, connecting solitons.

The critical velocity vcr, at which the molecule disintegrates
into far-separated individual solitons, is determined from GPE

simulations by setting the two bound solitons into motion in
opposite directions, as shown in Fig. 4. In the experiment,
pushing the solitons in opposite directions can be realized by
means of a laser beam, directed into the center of the molecule,
as used to split the condensate in two halves [2]. The intensity
of the laser beam can be varied to give the desired initial
velocity to solitons.

About the repulsive interaction between two antiphase
solitons the following comment is appropriate. As experi-
mentally demonstrated in [2] and theoretically shown in [35],
two colliding wave packets exchange not only velocities (as
classical particles do), but also their entire wave functions (as
quantum mechanical particles do via the tunnel phenomenon).
In our case of equal masses of two colliding solitons, the
classical and quantum descriptions lead to the same result.
Physically, the repulsive interaction of antiphase matter-wave
solitons can be regarded as the exchange of velocities of
two colliding classical particles interacting via a hard-core
potential.

V. NUMERICAL SIMULATION OF TWO-SOLITON
INTERACTIONS

In order to study the character of interaction between two
matter-wave solitons in numerical experiments we employ
an idea similar to that used for optical solitons in fibers
[5]. Initially at t = 0, two solitons, either in-phase φ = 0 or
out-of-phase φ = π , are created at some distance 	0 from
each other. At a later time t = t1 > 0 the distance between
solitons is measured again. If the solitons did not interact,
the distance between them should not change with respect to
its initial value 	1 = 	0. If the interaction was attractive,
the final measured distance should be less than the initial
distance 	1 < 	0. Finally, if the interaction was repulsive,
the final distance should be greater than the initial distance
	1 > 	0. The numerical experiment consists in repeating the
above procedure for different values of the initial distance 	0,
starting from a sufficiently large separation, greatly exceeding
the width of the soliton, then reaching short distances where
solitons start to overlap.

The result is presented at the left in Fig. 5 as a plot of 	1

(final separation) vs 	0 (initial separation). When the solitons,
comprising the molecule, are out-of-phase (φ = π ) we see that

1 2 3 4 5
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FIG. 4. (Color online) Left: The potential of interaction between two solitons, retrieved from numerical GPE simulation, for two values of
the molecule’s norm. Similarity to the VA-predicted potential U (a) in Fig. 1 is evident. Right: The stationary half-separation between solitons
of the molecule x0 [dashed (blue) line] and its binding energy Eb [solid (red) line] as a function of the molecule’s norm N . Symbols correspond
to values found from numerical simulations of the GPE, (1), and lines are interpolating curves for visual convenience.
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FIG. 5. (Color online) Left: The character of soliton interactions for antiphase and inphase solitons. Antiphase solitons attract each other
at large separations and repel at small separations [solid (red) line]. There exists a stationary separation, shown by the filled (red) circle, where
attraction changes to repulsion. In-phase solitons always attract and collide [dashed (blue) line]. Middle: The initial separation between two
solitons is varied (vertical axis) and the density profiles |ψ |2 at the final time (t = t1) are measured as a function of x. Two antiphase solitons
can form a stable soliton molecule at the appropriate initial separation 	0 	 1.3. Right: Similar to the middle panel, but for in-phase solitons.
Two in-phase solitons always collide and do not form a stable bound state.

at large separations the solitons do not interact [	1 ≈ 	0; solid
(red) curve is close to the median], while at shorter distances
they attract each other [	1 < 	0; solid (red) curve is below the
median) until they reach a stationary separation, where again
	1 = 	0 [filled (red) circle on the median, where attraction
and repulsion are in balance). When solitons are placed at even
shorter distances, they repel [	1 > 	0; solid (red) curve is
above the median]. That is, the two-soliton molecule behaves
like a diatomic molecule. For in-phase solitons (φ = 0) we
see that solitons attract each other until their separation
becomes comparable to the width of the soliton, then merge,
forming a wave packet, whose shape strongly oscillates. The
density profiles associated with solid (red) and dashed (blue)
curves are presented in the middle and right panels in Fig. 5,
respectively.

The numerical simulations are performed using realistic
values of atom numbers and interaction parameters in 164Dy for
which m = 2.7 × 10−25 kg, d = 10 μB = 9.27 × 10−23 A m2,
ad = μ0d

2m/(12π�
2) 	 7 × 10−9 m. The frequency of radial

confinement, ω⊥ = 2π × 62 Hz, provides the radial oscillator
length l0 	 1 μm and unit of time t0 = 2.6 ms. For parameter
values g0 = 20 and N = 2 used in numerical simulations we
obtain the number of atoms in a two-soliton molecule, N =
g0Nl0/(2ad ) 	 3000. The total number of atoms in the 164Dy
condensate was N = 15 000 [20].

VI. CONCLUSIONS

We have studied the interaction between two bright solitons
in a dipolar BEC and found the conditions under which they
form a stable bound state. It was revealed, by numerical
simulations of the governing nonlocal GPE and corresponding
variational analysis, that two antiphase solitons in dipolar
condensates behave similarly to a diatomic molecule. Namely,
they attract each other at large separations and repel each
other at small separations. There exists a particular distance at
which the two solitons remain motionless in their stationary
state. Solitons in a weakly perturbed molecule perform
low-amplitude oscillations near the equilibrium position, the
frequency of which is predicted quite accurately by the
developed model. Two in-phase solitons, when placed close
to each other, always collide and do not form the bound state.
The obtained results can be useful in further studies of the
properties of multisoliton bound states in dipolar BECs.
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