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We consider the existence and stability of solitons in a χ �2�
coupler. Both the fundamental and second harmonics (SHs)
undergo gain in one of the coupler cores and are absorbed
in the other one. The gain and loss are balanced, creating a
parity-time (PT ) symmetric configuration. We present two
types of families of PT -symmetric solitons having equal
and different profiles of the fundamental and SHs. It is
shown that the gain and loss can stabilize solitons. The in-
teraction of stable solitons is shown. In the cascading limit,
the model is reduced to the PT -symmetric coupler with
effective Kerr-type nonlinearity and the balanced nonlinear
gain and loss. © 2017 Optical Society of America

OCIS codes: (130.2790) Guided waves; (350.5500) Propagation.
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Optical solitons in media with quadratic (χ�2�) nonlinearities
have been the subject of intensive investigations over the last
few decades, both theoretically and experimentally [1,2]. Several
types of quadratic bright soliton solutions have been reported in
an exact analytical form [3–6], and families of solutions were
investigated numerically [7]. Spatial one-dimensional quadratic
solitons in optical waveguides have been observed [8,9].

Direct nontrivial generalization of guiding structures for the
χ�2� solitons [1] towards their manipulations is a χ�2� coupler.
Such a device supports propagation of four different field
components, which are two fundamental fields (FFs) and the
respective second harmonics (SHs) in each of the two coupler
arms. The coupling of the fields in the arms can be imple-
mented in different ways. The simplest model was with the
tunnel coupling between FF only, used for investigation of dis-
crete χ�2� solitons [10]. While carrier wave states and all-optical
switching in χ�2� couplers were the subject of many studies
[11], solitons in coupled optical waveguides with quadratic
nonlinearities were explored much less. Numerical simulation
of propagation of temporal solitons and their switching
in the χ�2� coupler has been performed in [12], while the exist-
ence of solitons and their stability for the case of no walk-off
and full matching was shown in [13].

In this Letter, we investigate solitons in a χ�2� coupler with
gain in one arm and absorption in another one (as illustrated

in Fig. 1). The gain and loss are balanced, thus implementing
a parity-time (PT ) symmetric [14] system. Motivation of our
study resides in peculiarities of such a device. Indeed, in spite of
the gain and loss, it allows for propagation of soliton families
[15], which depend on one (or several) parameters. Since the
gain, usually implemented in a form of active impurities, is con-
trolled by an external pump field, the parameters of solitons
can be varied at fixed parameters of the hardware, making the
control flexible, and opening possibilities, for instance for novel
types of optical switching or nonreciprocal devices. Further-
more, including the gain and loss in the system changes the
parameter regions of the existence and stability of χ�2� solitons.
Additionally, the cascading limit of such a coupler gives origin
to a PT -symmetric coupled nonlinear Schrödinger equations,
of a new type. Recently, exploring different settings it was
found [16–18] that the gain and loss modify the matching con-
ditions, making it possible the resonant mode interaction
which otherwise is not allowed in the conservative waveguides.

Since four different harmonics are involved, from the theo-
retical point of view the χ�2� coupler can be viewed as a par-
ticular type of nonlinear PT -symmetric “quadrimer.” For the
Kerr-type nonlinearity, quadrimers received considerable atten-
tion (see e.g., [15] and references therein). In the case of χ�2�
nonlinearity, the previous studies were restricted to stationary
(nondiffractive) propagation [19].

We focus on the interaction of waves occurring in coupled
active and absorbing planar waveguides (Fig. 1). The equations
describing light propagation in such χ�2� coupler read

iu1;z � −u1;xx � κ1u2 − 2u�1v1 � iγ1u1;

iv1;z � −
1

2
v1;xx � κ2v2 − u21 − qv1 � iγ2v1;

iu2;z � −u2;xx � κ1u1 − 2u�2v2 − iγ1u2;

iv2;z � −
1

2
v2;xx � κ2v1 − u22 − qv2 − iγ2v2: (1)

Here we use the dimensionless variables [2] uj � 2LddEj and
vj � LddeiqzEj, where j � 1, 2 labels the waveguide for the
electric field envelopes Ej of the FFs (uj) and SHs (vj), the di-
mensionless propagation distance is z � Z∕2Ld and the trans-
verse coordinate is x � X ∕η. The linear coupling between
harmonics in different arms is κi � K iLd , and the mismatch
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of the propagation constants is q � ΔkLd , assumed to be the
same in both arms, where K 1;2 are the physical couplings of FF
and SHs (we consider them positive), d � ω1∕�ϵ0n1c�χ�2� is
the parameter of quadratic nonlinearity, Δk � 2k1 − k2 is the
phase mismatch, η is the characteristic beam width, and Ld �
k1η2 is the linear diffraction length. The strength of the gain in
the first waveguide and absorption in the second waveguide are
characterized by the parameters γj > 0, for the first (j � 1) and
second (j � 2) harmonics, respectively. The equality of the gain
and loss ensures PT -symmetry of the coupler.

The model (1) includes diffraction effects and generalizes
the model of the PT -symmetric coupler considered in [19].
On the other hand, inclusion of the gain and loss represents
a PT -symmetric generalization of the conservative coupler
considered in [13]. We also notice that the system (1) obeys
Galilean invariance. Thus, having found localized beams,
which we described by the four-component vector ψ�x; z� �
�u1�x; z�; v1�x; z�; u2�x; z�; v2�x; z��T with T standing for the
transpose, and which propagate along the z direction, one
readily obtains beams propagating under a nonzero angle θ
with respect to the z-axis in the form �eiφu1�ξ; z�; e2iφv1�ξ; z�;
eiφu2�ξ; z�; e2iφv2�ξ; z��T , where φ � wx∕2 − w2z∕4, ξ �
x − wz, and w � tanh θ. In the presence of a gain, a necessary
condition for the possibility of observing localized nonlinear
beams is the stability of the zero solution. This corresponds
to the choice of the parameters in the so-called unbroken
PT -symmetric phase [14]. Such stability is obtained from
the linear dispersion relation. Using the ansatz u; v ∼ eibz�ikx

in (1), we obtain four branches of the linear modes:

b1;2 � −k2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21 − γ

2
1

q
; b3;4 � −

1

2
k2 � q�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ22 − γ

2
2

q
: (2)

Thus, the PT -symmetry is unbroken (real bj:s) if γ1 < κ1 and
γ2 < κ2. Below we restrict the discussions to these constraints.

Let the parameters satisfy the relation as follows:

κ21γ2 � 2κ2γ1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21 − γ

2
1

q
: (3)

In this case, one can introduce δ through the relations
sin�δ� � γ1∕κ1, where 0 ≤ δ ≤ π∕2, and define β1 �
κ1 cos�δ�, and β2 � κ2 cos�2δ�. Then the system (1) has a sol-
ution of the form (by analogy with the ansatz introduced in
[20]) u1 � u, u2 � �e�iδu, v1 � v, v2 � �e�2iδv, where the
functions u and v solve the standard system of the χ�2� equations:

iuz � −uxx � β1u − 2u�v;

ivz � −
1

2
vxx � �β2 − q�v − u2: (4)

Our main goal is the analysis of the effect of the interplay
between nonconservative terms and coupling between the two
systems of solitons governed by (1). For the analysis of stationary
solutions, we first define the total energy flow in the j-th
waveguide Pj �

R �jujj2 � 2jvjj2�dx. In the conservative case
(γ1 � γ2 � 0), the total energy P � P1 � P2, is constant along
propagation. In the presence of the gain and loss, it is generally
not so anymore, and one computes

dP
dz

� 2γ1

Z
�ju1j2 − ju2j2�dx � 4γ2

Z
�jv1j2 − jv2j2�dx: (5)

This relation means that for a stationary solution, i.e., the
solution of the form uj � ũj�x�eiβz and vj � ṽj�x�e2iβz , the dif-
ference in the energy flows is defined by

P1 − P2 � �1 − γ1∕γ2�
Z

�ju1j2 − ju2j2�dx: (6)

Thus, if γ1 ≠ γ2 (what corresponds to the most typical situation)
the equality of the energy flows in two different waveguides re-
quires ju1j � ju2j and jv1j � jv2j. Further, we notice that due
to the PT symmetry, if a column-vector ψ � �u1�x; z�;
v1�x; z�; u2�x; z�; v2�x; z��T is a solution of (1), then the
PT -transformed field ψ̃ � PT ψ � �u�2�x; −z�; v�2�x; −z�;
u�1�x; −z�; v�1�x; −z��T is also a solution. Thus, a stationary
PT -symmetric solution, which is defined by the relation
PT ψ � ψ (or, more generally, PT ψ � eiϑψ , where ϑ is a con-
stant phase) supports the equality of the power flows. On the
other hand, if, for a given solution P1 ≠ P2, then the obtained
solution is non-PT -symmetric.

A large diversity of the particular solutions of the system (4)
can be found [6]. To restrict the number of cases, below we
concentrate on the simplest ones and start with the PT -
symmetric solutions. Using the well-known [3] soliton of (4),
we obtain that such PT -symmetric soliton exists subject to
the constraint (3), when γ1 � κ1 sin�δ� and γ2 � κ2 sin�2δ�

u1 � 3β2eipz∕cosh2�βx�; u2 � �u1e�iδ;

v1 � 3β2e2ipz∕cosh2�βx�; v2 � �v1e�2iδ; (7)

where

p � 1

3
	2q � κ1 cos�δ� − 2κ2 cos�2δ�
; (8)

β2 � 1

6
	q � 2κ1 cos�δ� − κ2 cos�2δ�
: (9)

The right-hand side of the last equation must be positive,
which imposes the constraint on the mismatch of the propa-
gation constants: q > q0�δ� � κ2 cos�2δ� − 2κ1 cos�δ�. For
the conservative case δ � 0, we have that q0�δ � 0� � qcons �
κ2 − 2κ1. Furthermore, one can verify that q0�δ� < qcons for the
interval δ ∈ �0; π∕2�, i.e., the gain and loss introduced in the
system reduce the lower band for q for which the exact solution
(7) exists; see inset (a) of Fig. 2 for an illustration. For all other δ
(i.e., for δ ∈ �π∕2; π�), one has that q0 > qcons.

The numerical stability analysis was performed by studying
the evolution of initially perturbed stationary states according
to (1) along z and investigating signals of instability. The
perturbation is invoked at z � 0 by multiplying the initial con-
ditions for each component of the vector ψ introduced above
by the factor �1� 10−3nj�, with j � 1; 2; 3; 4 and nj being un-
correlated Gaussian random numbers with zero mean and unit

1 x

z

wav
eg

ui
de

 1

wav
eg

ui
de

 2

k
k

k1

12

2

22
k1

Fig. 1. Schematic presentation of a planar χ�2� coupler. The first
and second waveguides have gain and absorption, respectively. Four
beams are applied at the input (z � 0).
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variance. We then first evaluated to monitor several different
signals of instability for threshold values of 10% deviation from
the initial values during the evolution 0 < z ≤ zm � 10 for
each of the four moduli of the fields. We numerically found
different quantities (and components) to perform qualitatively
similar with respect to determining instability. These quantities
were the center of mass, the (maximum) amplitude, and the
root mean square (RMS) width. Therefore, for transparency,
the results on stability presented here (Fig. 2) are based on only
one signal of instability (for only the first component u1), that
is, the RMS width. If no signal of instability occurred, we re-
peated the analysis with zm � 102. All calculations were done
with the C�� code generator XMDS [21,22].

Our main numerical results on the stability of solutions are
summarized in Fig. 2. In the main panel, we show the stability
of conservative solitons on the diagram (q; κ2) for κ1 � 1. The
solitons exist above the dashed line, which corresponds to the
exact analytical solution, i.e., described by (7) with q � qcons
and δ � 0. The solitons in the green stripe above the dashed
line were found stable. All other solitons with a larger mismatch
of propagation constants are unstable (red domain).

Turning now to the stability of PT -symmetric solitons
given by (7)–(9) with the gain and loss fulfilling the relation
(3) in the general case (0 ≤ γ1 < κ1 � 1 and 0 ≤ γ2 < κ2),
we show the stability analysis in the two diagrams �γ1; γ2� [in-
sets in Fig. 2] for different sets of the “conservative” parameters.
The gain and loss can stabilize solitons, see inset (b) of Fig. 2,
where we show a branch of solutions in the plane (γ1; γ2),
which bifurcates from an (arbitrarily chosen) unstable conser-
vative soliton marked by a blue cross in the main panel. Hence,
we observe that a sufficiently large gain and loss can stabilize the
solutions (computed stable solitons are shown by green dots).
Furthermore, since the domain of existence of localized solu-
tions in the presence of the gain and loss is larger than that of
the conservative case, we considered stability of solitons which
do not exist in the conservative limit. An illustrative example is
shown in inset (a) of Fig. 2 and corresponds to the set of param-
eters indicated by the asterisk on the main panel. We again

observed that, at a sufficiently large gain and loss, there exists
a stability window (green dots).

Such solitons can be observed in a system of tunnel-coupled
slab waveguides of LiNbO3 [8,23] of a characteristic length
∼5 cm. For an input beam width ∼60 μm, the diffraction
length is Ld ≈ 2.0 mm, corresponding to z ≈ 25. A typical
linear coupling length is Lc � π∕K j ≈ �1 − 2� cm, corres-
ponding to κ1 ≈ κ2 ≈ �0.1–0.2�. The absorption and gain
induced by active impurity doping can vary in the range
≲0.17�0.35� dB cm−1 for the FF (SHs), i.e., γ1 ≈ 0.05; γ2 ≈
0.1 in the dimensionless variables. Experimentally, feasible
input powers for soliton generation for quadratic nonlinearity
parameter χ�2� � 5.6 pm∕V are ∼10 kW, corresponding to
u ∼ 1 (dimensionless).

Stable PT -symmetric solitons were tested with respect to
the mutual interactions; an example is shown in Fig. 3, and
we verified that the energy is constant (P1 � P2 � constant)
when (3) is fulfilled. The collision, however, cannot be seen as
strictly elastic, because weak modulation of the pulse shapes
after the collision is detectable.

In the case of the SHs generation in a single waveguide, an
approximate solution can be obtained in the so-called cascading
limit, which corresponds to the large mismatch parameter
jqj ≫ 1 [11]. This allows one to reduce the description of the
two component systems to the single nonlinear Schrödinger
equation for the FF only. A similar reduction is also possible
in the case of the PT -symmetric coupler (1). To this end,
we introduce Δ � q2 � γ22 − κ

2
2 and require jΔj to be large

enough. Notice that this last condition can be satisfied not only
due to a large mismatch q (as in the conservative systems),
but also due to the strong coupling κ2 of the SHs. Now the
derivatives of v1;2 can be neglected and one computes

v1 ≈ −
�q� iγ2�u21 � κ2u22

Δ
; v2 ≈ −

�q − iγ2�u22 � κ2u21
Δ

: (10)

The equations for the FF are now reduced to

iu1;z � −u1;xx � κ1u2 � iγ1u1 �
2�q� iγ2�

Δ
ju1j2u1 �

2κ2
Δ

u�1u
2
2;

iu2;z � −u2;xx � κ1u1 − iγ1u2 �
2�q − iγ2�

Δ
ju2j2u2 �

2κ2
Δ

u�2u
2
1:

(11)

Thus, we obtained a PT -symmetric coupler with self-phase
modulation and the four-wave mixing terms due to coupling
of the SHs, as well as with linear and nonlinear gain and loss.
At γ2 � 0, (11) is reduced to the PT -symmetric dimer model
[20,24] while, for an x-independent plane wave solution (11),
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Fig. 2. Stability for solitons (7) with equal intensity profiles of the
FF and SHs. The main panel shows the conservative case (γ1 � γ2 � 0).
The inset plots are for the specific values of κ2 and q, where 0 ≤ γ1 <
κ1 � 1 and 0 ≤ γ2 < κ2 are given by (3). The dashed diagonal line
in the main figure is qcons, discussed under (9). Inset (b) shows how
an unstable solution in the conservative case, marked by a blue cross
on the main panel, can be stabilized by the loss and gain (the green
domain for 0.32 ≲ γ1 ≲ 0.45). Inset (a) shows examples of a branch
of solutions for 0.49 ≤ γ1 ≤ 0.99 situated below qcons, at the (black)
asterisk in the main panel. The (red) green dots in the insets are for
(un-) stable solutions (up to zm � 102). The step size in the numerics
was dz � 10−3, and the transverse domain jxj < 50 (dx � 0.1).
The resolution in the main panel was Δκ2 � Δq � 0.02.

Fig. 3. Interaction of two solitons with equal intensity profiles of
the FF and SHs, given by (7). Panel (a)/(b) shows the modulus square
of the u1 − ∕v1-component. From (7), we see that ju2j2 and jv2j2 are
proportional to those. The parameters here were κ1 � 1, κ2 � 0.5,
q � −1, γ1 � 0.5, and γ2 ≃ 0.433, i.e., from (3), with a velocity
of w � �1 for the two initial pulses.
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becomes the nonlinear coupler [25]. Both limits have been
studied in the literature (see e.g., [15] and references therein).
The gain and loss in the second component, thus, introduce
nonlinear the gain and loss for the first component. An inter-
esting feature of the cascading limit (11) is that the sign of its
effective Kerr-like nonlinearity is determined by the coefficient
q∕Δ and, hence, can be either focusing (q∕Δ < 0) or defocus-
ing (q∕Δ > 0). A soliton solution of (11) is readily found:

u1 � A sech
�
Ax∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 cos�2δ� − q

p �
; u2 ��u1e�iδ; (12)

provided the condition (3) holds and the additional constraint
q < κ2 cos�2δ� is satisfied. After having numerically confirmed
the stability of the approximate solutions (10) and (12) (given
that jΔj ≫ 1 and small γ1;2), we have also tested those solutions
with respect to mutual interactions; see Fig. 4 for an example.
We have verified that we have solitons for a large domain
of initial conditions fulfilling jΔj ≫ 1 though, generally, with
oscillating energies P1 and P2 in the two waveguides (with
P1 � P2 ≠ constant), unless the condition (3) is fulfilled.

To quantify how (10) and (12) works for different values of
Δ, we define the following numerical measure:

hΔX 2izm ≡ hjX 2�z� − X 2�0�jizm∕X 2�0�; (13)

where hf izm � z−1m
R zm
0 f �z�dz with X 2�z� � P−1

1

R
x2�ju1j2 �

2jv1j2�dx. Here zm should be chosen large enough such that
hΔX 2izm is qualitatively independent of zm. The characteriza-
tion of the solutions using the parameter hΔX 2izm is shown in
Fig. 5, where we used zm � 104 (dz � 10−3) and jxj < 102

(dx � 0.2) for all curves. We observe that for the parameter
Δ, in spite of the fact that it is composed of three system

parameters (due to (3), only two of them are independent),
the curves for different q and κ2 indicate the same qualitative
behavior in the cascading limit, and that the average deforma-
tion of the soliton shape (13) decreases fast with jΔj. This
numerically confirms the validity of the approach.

To conclude, we have obtained two families of stable
PT -symmetric solitons in a PT -symmetric χ�2� coupler. We
numerically found, in the case of solitons with equal shapes
of the first and second harmonics, a region of stability for
the solitons. It is established that the gain and loss can increase
the domain of soliton existence with respect to the propagation
constant mismatch and can stabilize solitons which are unstable
in the conservative limit. Stable solitons interact nearly elasti-
cally. We also analyzed the cascading limit, which is reduced to
a PT -symmetric dimer with the linear and nonlinear gain and
loss. The solitons in this limit can still be found stable, but their
interactions manifest appreciable non-elastic effects.
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Fig. 4. Interaction of two solitons with initial profiles obtained from
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Fig. 5. Characterization of the solutions in the cascading limit,
using (10) and (12) for the initial conditions. In (a), (Δ > 0) q was
varied, while κ2 � 1 (κ1 � 1). In (b), (Δ < 0) κ2 was varied, while
q � 1. The blue curves are for γ1 � γ2 � 0, and the red curves are
for γ1 � γ2 � 0.05. The green curve in (a) is for γ1 � 0.05 and
γ2 ≃ 0.0999, according to Eq. (3). When varying κ2 (Δ < 0), the use
of Eq. (3) leads to different values of γ2; the resulting green curve in
(b) is partly overlapping the red. For the data points with dashed curves
to the left, a drift along x was notable.
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