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The resonant scattering of gap solitons (GSs) of the periodic nonlinear Schrödinger equation, with a localized
defect which is symmetric under the parity and the time-reversal (PT ) symmetry, is investigated. It is shown that
for suitable amplitudes ratios of the real and imaginary parts of the defect potential the resonant transmission
of the GS through the defect becomes possible. The resonances occur for potential parameters which allow the
existence of localized defect modes with the same energy and norm of the incoming GS. Scattering properties
of gap solitons of different band gaps with effective masses of opposite sign are investigated. The possibility of
unidirectional transmission and blockage of gap solitons by PT defect, as well as, amplification and destruction
induced by multiple reflections from two PT defects, are also discussed.
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I. INTRODUCTION18

Recently it has been shown that non-Hermitian Hamiltoni-19

ans that are symmetric with respect to both parity and time-20

reversal (PT ) symmetry can have a fully real spectrum, in spite21

of the non-Hermiticity of the Hamiltonian [1]. This observation22

has attracted the attention of many researchers, both for23

theoretical developments of dissipative systems in quantum24

mechanics, and for developments of concrete applications in25

the fields of optics [2], plasmonics [3], electronics [4], and26

metamaterials [5].27

In particular, in the field of nonlinear optics,PT -symmetric28

potentials are presently investigated for management of light29

propagation in media with specific spatial distributions of gain30

and losses [2]. In this context, many interesting phenomena31

have been reported, including double refraction of beams [6],32

nonreciprocal propagation in periodic PT -symmetric media33

[7], existence of optical solitons [8,9], routing in optical PT -34

symmetric mesh lattices [10], etc.PT -symmetric lattices have35

also been suggested for realizations in resonant media with36

three-level atoms [11].37

The scattering of usual continuous and discrete solitons38

by localized PT potentials have been recently investigated39

in [12] for the case of Scarf II type PT potential, and in [13]40

forPT defects in a quasilinear regime where it has been shown41

that reflected and transmitted small amplitude waves can be42

amplified in the scattering process. The possibility of soliton43

switching in a PT -symmetric coupler induced by the gain and44

loss properties of the PT defect was also suggested in [14].45

Existence and stability of defect-gap solitons in real46

periodic optical lattices (OLs) with PT -symmetric nonlinear47

potentials have been demonstrated in [15]. In this context, par-48

ticular attention has been devoted to the scattering properties49

of linear waves propagating in PT -symmetric optical media,50

as well as to the existence of localized states, both in linear51

and nonlinear cases. The existence and stability of gap solitons52

(GSs) inPT -symmetric lattices with single-sided defects were53

considered in [16,17] for the continuous case, and for the54

discrete case with a nonlocal nonlinearity in [18], where it was55

shown that nonlocality can enlarge soliton existence regions56

in parameter space.57

Scattering of GSs by localized defects has been extensively 58

investigated in the conservative case. In particular, the exis- 59

tence of repeated reflection, transmission, and trapping regions 60

for increasing defect amplitudes has been demonstrated in [19] 61

where the phenomenon of resonant transmission was discussed 62

and ascribed to the existence of defect modes matching the 63

energy and the norm of the incoming GS. Moreover, it was 64

shown that the number of resonances observed in the scattering 65

coincides with the number of bound states existing inside the 66

defect potential and that the sign of the effective mass of the 67

GS plays an important role in the interaction with the defect 68

potential [19]. Scattering properties of GSs by PT -symmetric 69

defect potentials, to the best of our knowledge, have not been 70

investigated. Quite recently, the existence of defect modes of 71

PT -symmetric OLs has been experimentally reported in [20]. 72

Possible extensions of the above conservative results to the 73

case of PT defects can be of interest in several respects. In 74

particular, it is interesting to see if the interpretation of the scat- 75

tering properties in terms of resonances withPT defect modes 76

is still valid. In addition, the interplay between effective mass, 77

potential amplitudes, and interaction is also very interesting to 78

explore in the presence of PT -symmetric defects. 79

The aim of the present paper is to investigate the scattering 80

properties of a GS of the periodic nonlinear Schrödinger 81

equation (NLSE) by localized PT -symmetric defects. In 82

particular, we show that resonant transmissions of GSs through 83

a PT defect become possible for amplitude ratios of real 84

and imaginary parts of the PT potential which allow the 85

existence of defect modes with the same energy and norm 86

of the incoming GS. For PT defects with a small imaginary 87

part, the scattering properties are found to be very similar to 88

those reported for the conservative case [19]. As the imaginary 89

part of the PT defect potential is increased, however, we 90

show that GS can be strongly amplified or depleted especially 91

when potential parameters are very close to higher resonance. 92

Resonant transmission peaks obtained from direct numerical 93

integrations of the NLS equation are found to be in all cases 94

in good agreement with those predicted by a stationary PT 95

defect mode analysis. 96

Scattering properties of GS with different effective masses 97

are also investigated. In particular, we show that GS with 98
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opposite effective mass behave similarly when the sign of99

the PT defect is reversed, this confirms the validity of an100

effective mass description in the scattering byPT defects. The101

possibility of unidirectional transmission of GS through PT102

defects, and the amplification or destruction of a GS trapped103

between two PT defects, are also considered at the end.104

Finally, we remark thatPT -symmetric potentials are presently105

experimentally implemented in optical systems and we expect106

that the above results can have experimental implementations107

in systems similar to the one considered in [20].108

The paper is organized as follows. In Sec. II we introduce109

the model equation and discuss the main properties of the110

system. In Sec. III we present scattering results obtained from111

direct numerical PDE integrations of the system, for resonant112

transmissions, trapping, and reflections of a GS through a113

PT defect, as a function of the potential parameters. This114

is done both for a GS of the semi-infinite gap and for GS of115

the first band gap, with positive and negative effective masses,116

respectively, and the results are compared with those obtained117

from defect mode analysis. In Sec. IV we discuss possible118

applications of the scattering properties of a GS both by a119

single PT defect and by a couple of defects, while in the last120

section the main results of the paper are briefly summarized.121

II. THE MODEL122

The model equation we consider is the following normal-123

ized one-dimensional NLSE:124

i�t = −�xx + [Vol(x) + Vd (x)]� + σ |�|2�, (1)

with Vol(x) denoting a periodic potential (optical lattice) of125

period L [Vol(x) = Vol(x + L)] and Vd is a localized PT -126

symmetric complex defect introducing gain and loss in the127

system.128

This equation arises in connection with the propagation of129

a plane light beam in a Kerr nonlinear media with a linear130

complex refraction index n(x) = nR(x) + inI (x) introducing131

periodic modulation and localized gain-loss distribution in the132

transverse x-direction. As is well known, the wave equation133

for the propagation of the electric field of the beam, in the134

paraxial approximation, can be written as135

iEz + 1

2β
Exx + k0[nR(x) + inI (x) + σ |n2||E|2]E = 0,

(2)

where E(x,z) is the electric field, z is the longitudinal (prop-136

agation) distance, β = n0k0 = 2πn0/λ0 is the propagation137

constant, with n0 and n2 as the background and quadratic138

parts of the refraction index, respectively, and with σ fixing139

the sign of the coefficient of the Kerr nonlinearity (e.g., σ = 1140

for focusing and σ = −1 for defocusing cases). It is known141

that in order to satisfy the PT symmetry nR(x) must be an142

even function while the gain-loss component nI (x) must be143

odd. Equation (1) then follows from Eq. (2) after introducing144

dimensionless variables t = z
Lb

,x = x
xb

and the rescaling of145

the field amplitude and refraction index according to146 √
k0|n2|Lb E = �, 2β2x2

bn(x) = Vol + Vd (3)

(here xb denotes the initial width of the beam and Lb = βx2
b is147

its diffraction length). In the following we fix Vol = V0 cos(2x)148

and take the defect potential Vd (x) of the form 149

Vd (x) = η + iξx√
2π	

exp[−(x − x0)2/(2	2)], (4)

where η is the strength of the conservative part of the defect 150

while coefficient ξ stands for the gain-dissipation parameter. 151

The width of the defect is fixed to 	 = 5 in all numerical 152

calculations. Similar PT defect was also considered recently 153

in Ref. [17]. Although in this paper we mainly concentrate on 154

the case of a singlePT defect, some result about the scattering 155

of GSs from two PT defects will also be discussed at the end. 156

As it is well known, in the absence of any defect potential, 157

Eq. (1) possesses families of exact GS solutions with energy 158

(propagation constant) located in the band gaps of the linear 159

eigenvalue problem 160

d2ϕαk

dx2
+ [Eα(k) − Vol(x)]ϕαk = 0, (5)

where ϕαk(x) are an orthonormal set of Bloch functions with α 161

denoting the band index and k is the crystal momentum inside 162

the first Brillouin zone (BZ): k ∈ [−1,1]. It is also known 163

that small-amplitude GSs with energies Es very close to band 164

edges are of the form ψ(x,t) = A(ζ,τ )ϕαk(x)e−iEα (k)t with the 165

envelope function A(ζ,τ ) obeying the following NLSE: 166

i
∂A

∂τ
= − 1

2Meff

∂2A

∂ζ 2
+ χ |A|2A, (6)

where τ and ζ are slow temporal and spatial variables, Meff = 167

(d2Eα/dk2)−1 denotes the soliton effective mass, and χ = 168

σ
∫ |ϕαk|4dx is the effective nonlinearity [22]. The condition 169

for the existence of such solitons is χMeff < 0 [21] and 170

coincides with the condition for the modulational instability 171

of Bloch wave functions at the edges of the BZ [22]. In the 172

presence of an OL with a localized PT defect, the linear 173

spectral problem will still display a band structure but with 174

additional localized states (defect modes) that are associated 175

with real eigenvalues (in band gaps) when the imaginary part 176

of the potential is below a critical value |ξc| = |η|/√2	. 177

Above this point, defect mode spectrum becomes mixed 178

with complex pairs of eigenvalues, this corresponding to a 179

dynamical breaking of the PT symmetry [23]. We remark 180

that in nonlinear optics, PT symmetry and PT -symmetry 181

breaking have been both observed experimentally [24,25]. 182

III. SCATTERING OF GS BY A PT DEFECT: 183

NUMERICAL RESULTS 184

In order to investigate scattering properties of a GS by a 185

localizedPT defect, we compute by means of direct numerical 186

integrations of Eq. (1) the transmission (T ), trapping (C), and 187

reflection (R) coefficients defined as 188

T = 1

N0

∫ ∞

xc

|�(x,ts)|2dx,

C = 1

N0

∫ xc

−xc

|�(x,ts)|2dx, (7)

R = 1

N0

∫ −xc

−∞
|�(x,ts)|2dx,
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where the integrals are evaluated after a sufficient long time ts189

(typically ts ≈ 20 000), for the process to become stationary.190

Here N0 denotes the initial norm of the incoming GS [e.g.,191 ∫ ∞
−∞ |�(x,t = 0)|2dx], and the interval [−xc,xc] represents192

the trapping region around the PT defect, with xc fixed in all193

our calculations to xc = 30L. In particular, we are interested194

in characterizing the dependence of the above coefficients on195

the PT defect parameters η and ξ , both for a GS of the196

semi-infinite gap and for a GS of the first band gap, having197

positive and negative effective masses, respectively. Notice198

that different from the conservative case, the sum of the above199

coefficients is not normalized to 1, e.g., R + T + C �= 1, due200

to the presence of gain and loss in the system which does201

not allow the norm conservation. In particular, the above202

coefficients during the scattering can become larger than one203

due to the gain action of the PT defect. In all numerical204

investigations reported below, the GS is constructed as a205

stationary solution of the periodic NLS equation located at206

a large distance (≈100L) from the PT defect (far away207

from the defect such states practically coincide with of the208

NLSE with a perfect OL). The stationary GS is then put in209

motion by means of the phase imprinting technique, e.g.,210

by applying a linear phase e−iσvx/2 to the stationary wave211

function.212

A. GS of the semi-infinite gap213

Let us first consider the case of a GS of the semi-infinite214

gap, e.g., with σ = −1 in Eq. (1), with energy (propagation215

constant) Es = −0.125 close to the bottom edge of the lowest216

energy band. Initial GS profile and PT defect shape Vd (x) are217

shown in Fig. 1 for the case ξ = ±0.02|η|. In the numerical218

experiment we apply an initial velocity to the GS, typically in219

the range 0.02–0.1, and gradually decreasing the strength of220

the defect parameter η under condition ξ = ±0.02|η|, in order221

to obtain the RCT coefficients depicted in Figs. 2(a) and 2(b)222

(see also Figs. 3, 4, 6, 9, 10 for the other cases discussed223

below). We see that for weak defect amplitudes and for the224

same GS initial velocity (v = 0.05), the positions of the T225

peaks, labeled B, C, and D in Fig. 2(a), mostly coincide with226

the ones of the conservative case considered in [19] (see Fig. 3227

in [19]).228

It is worth noting the differences in the behavior of the229

reflection coefficient. While in the case (ξ = 0) the coefficient230

R approaches the value 1 in the regions of nonexistence of231

defect modes, one can see that in the case ξ = 0.02|η| the R232

coefficient in the interval η ∈ [−6,0] in the total reflection233

regions becomes slightly greater than 1 [see Fig. 2(a)],234
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0
η=−0.1
ξ=0.02|η|

Re
Im

(b)

Vd
x-50 0 50-0.01

-0.005

0

η=−0.1
ξ=−0.02|η|

Re
Im

(c)

Vd
x-200 -150 -1000

0.004

0.008 |ψ|2 (a)

FIG. 1. (Color online) Initial profile of a GS located in the
semi-infinite gap at (a) Es = −0.125 and defect potential Vd (x) with
(b) ξ = 0.02|η| and with (c) ξ = −0.02|η|. Other parameters are
η = −0.1, V0 = −1.

η
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1
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(ξ=−0.02|η|)

Vd

BCD

η

RC
T
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0.5

1
(a)

(ξ=0.02|η|)

Vd

R
C
T

FIG. 2. (Color online) RCT diagram for (a) Vd (x) with
ξ = 0.02|η| and (b) Vd (x) with ξ = −0.02|η|. Other parameters:
v = 0.05, Es = −0.125, V0 = −1.

meaning that during reflection the GS has been amplified by 235

the defect. The opposite behavior is observed for the case 236

ξ = −0.02|η| [corresponding to the defect Vd (x)], e.g., in the 237

reflection regions inside the interval η ∈ [−6,0] the reflection 238

coefficient is always smaller than 1, meaning that the GS has 239

been damped during the reflection [see Fig. 2(b)]. 240

This behavior of the R coefficient may at a first sight 241

appear counterintuitive, especially if one observes that in our 242

numerical experiments the GS is always coming from the left 243

and when it gets amplified (depleted) it arrives first at the loss 244

(gain) side of the defect, from which one could expect just the 245

opposite, e.g., a depletion (amplification) of the GS from the 246

defect. The observed behavior, however, can be understood if 247

one considers in more detail the GS dynamics during reflection. 248

From an intuitive point of view one can argue that since for 249

ξ > 0 (ξ < 0) the GS interacts first with the loss (gain), it 250

passes this region with some velocity so that the turning point 251

of its dynamics occurs more closely to the gain (loss) region 252

η
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0.5

1

1.5

2

(ξ=0.02|η|)

(a)Vd

R
C
T

η

RC
T

−6.4 −6.2 −6 −5.8 −5.60

0.5

1

1.5

2

(ξ=−0.02|η|)

(b)Vd

FIG. 3. (Color online) Zoom of Figs. 2(a) and 2(b) showing
details in the interval η ∈ [−6.5,−5.5] around the resonance.
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of the defect (this is particularly true if the initial velocity is253

high or the imaginary part of the defect is small). Considering254

that the GS is an extended object and for the cases considered255

in this paper its typical width is of about 30L (see Fig. 1), e.g.,256

much larger than the size of the defect with a width ≈8L, this257

means that during the reflection the GS will be in any case258

exposed to the action of the gain (loss) side of the defect and259

the influence of this region on the dynamics will be larger as260

the closest will be the turning point at the origin. To understand261

if the GS will emerge amplified or depleted from the reflection262

it is convenient to consider the mean imaginary part of the263

defect potential seen by the GS at a given time defined as264

〈Vi〉(t) = 1

N0

∫ ∞

−∞
Im[Vd (x)]|�(x,t)|2dx. (8)

It is clear that if
∫ 〈Vi〉dt is positive (negative), the amplifica-265

tion (depletion) of the GS is expected during the reflection.266

This is exactly what it is shown in the right panels of Fig. 5,267

where results of two distinctive cases from Fig. 4, with η = −5268

and η = −7, are reported. In the left panels of Fig. 5 we have269

depicted the trajectory of the center X,270

X(t) = 1

N0

∫
x|�(x,t)|2dx (9)

of the density distribution during the reflection. One can see271

from this figure that, in agreement with our intuitive argument,272

for smaller values of |η| (e.g., on the right side of resonance273

at η ≈ −6) the GS can penetrate the defect more and in the274

cases in which the GS is amplified, the turning point of the275

trajectory always occurs closer (less close) to the origin for276

ξ > 0 (ξ < 0). The opposite behavior is observed for a GS277

that is depleted during the reflection.278

Interesting results are also observed when the imaginary279

part of the defect potential is increased and the non-Hermitian280

character of the interaction contributes more significantly to281

the scattering. For the chosen ratio ξ/|η| = 0.02, this occurs282

around the value η � −6 as one can see from the details283

depicted in Fig. 3(a). From this it is clear that the interaction284

η
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−8 −7 −6 −5 −40
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1
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v=0.1 (a)

R
C
T

η

RC
T

−8 −7 −6 −5 −40

0.5

1

1.5

(ξ=−0.02|η|)

v=0.1

(b)

FIG. 4. (Color online) The same as in Fig. 3 but for an incoming
GS velocity v = 0.1. Other parameters are fixed as in Figs. 2(a)
and 2(b).
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0
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0
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η=−5

t

<
V i

>

1000 1500 2000

−0.0005

0

0.0005

η=−7
η=−5

ξ=−0.02|η| (d)

FIG. 5. (Color online) Trajectories of the center of the density
distribution X(t) in (a), (c) and mean imaginary part of PT defect
〈Vi〉 in (b), (d) of a GS during reflection. The top row panels (a), (b)
corresponds to case ξ = 0.02|η| and the bottom row panels (c), (d) to
case ξ = −0.02|η|. Incoming GS velocity and other parameters are
fixed as in Fig. 4.

of the GS with the loss and gain parts of the PT defect 285

changes character when passing through the resonance point. 286

In particular, one can see that near η = −5.9 the reflection 287

coefficient shows a rapid growth corresponding to a strong 288

amplification during the reflection. The explanation of this 289

follows from the same arguments given above and from 290

the fact that the interaction with almost resonant stationary 291

defect modes will further prolong the interaction time that 292

the GS has with the gain side of the defect, this results in a 293

higher amplification. This effect can also be observed at lower 294

resonances by decreasing the incoming GS velocity, as one can 295

see from Fig. 6 for the rapid growth of T and R coefficients 296

occurring around η = −4. 297

η
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T

−8 −7 −6 −5 −4 −3 −2 −1 00

0.5

1

(ξ=0.02|η|)

(a)

R
C
T

η
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0.5

1

(ξ=−0.02|η|)

(b)

FIG. 6. (Color online) RCT diagram for (a) ξ = 0.02|η| and
(b) ξ = −0.02|η|. Other parameters: v = 0.02, Es = −0.125,
V0 = −1.
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From Figs. 2(a) and 2(b) it is also quite evident that the298

crossover of the R coefficient from R > 1 (R < 1) to R < 1299

(R > 1) occurs for the case ξ = 0.02|η| (ξ = −0.02|η|) when300

|η| is increased through the resonant point η = −6. This301

change of behavior can be understood from the fact that by302

further increasing the imaginary part of the PT defect (as is303

the case when |η| > 6), one reaches the point in which the304

turning point of the GS dynamics will always occur in the305

defect side from where the soliton arrives, so that it is always306

depleted by Vd and amplified by V d . This explanation also307

correlates with the above arguments in terms of turning points308

and mean effective potentials 〈Vi〉.309

From the more detailed Fig. 3, it appears evident that just310

beyond the point η = −6, trapping becomes dominant and due311

to strong interaction with defect modes, the GS becomes very312

unstable, leading to the irregular oscillatory behavior observed313

for the trapping coefficient in Fig. 3(b). By decreasing the314

velocity of the incoming GS, however, the transmission peaks315

become narrow (see Fig. 6) and the R coefficient becomes316

closer to 1 in the total reflection regions (scattering is less317

affected by the complex potential). This is a consequence of318

the fact that for a smaller velocity a small amount of the GS319

wave function penetrates the defect and the interaction with320

the complex part of the potential is reduced.321

It is also interesting to discuss the case η > 0 for which the322

real part of the PT defect corresponds to a barrier potential323

rather than a potential well. This obviously does not allow324

the formation of any stationary mode inside the defect since in325

this case C = 0 and only transmissions or reflections of the GS326

are possible. For a conservative defect (e.g., for ξ = 0) it was327

shown in [19] that for large defect amplitudes the incoming GS328

is always totally reflected (e.g., R = 1 and T = C = 0). For329

a PT defect with η > 0, we find that while the transmission330

and trapping coefficients continue to be zeros for large η, the331

reflection coefficient, in accordance to our previous discussion,332

depends on the sign of ξ (as well as on the ratio ξ/|η|) and can333

be smaller or larger than 1 (see Fig. 7) depending on whether334

the GS is interacting more with the dissipative or with the gain335

side of the defect, respectively.336

B. GS of first band gap337

Scattering properties of a GS belonging to the first band gap338

in the case of self-focusing Kerr nonlinearity [σ = 1 in Eq. (1)]339

are quite similar to the ones discussed above. In this case,340

however, it is possible to have GS with a negative effective341

η
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1.5
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Vd
η
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0 0.05 0.1 0.15 0.20

0.5

1

1.5
(a)

0.1

0.02

Vd

FIG. 7. (Color online) Behavior of the R coefficient in the
scattering of a GS of the semi-infinite band gap with v = 0.05,
by a PT defect with η > 0. The ratio ξ/|η| is indicated near the
corresponding curve.
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-Vd

x-200 -1000
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FIG. 8. (Color online) Initial profile of a GS located near the top
of the lower band at (a) Es = 0.475, andPT defect potential Vd (x) for
(b) ξ = 0.02|η| and (c) ξ = −0.02|η|. Other parameters are η = 1,
V0 = −1.

mass if the Kerr nonlinearity is defocusing. To investigate the 342

effects of a negative GS mass on the scattering properties we 343

consider a GS of energy (propagation constant) Es = 0.475 344

close to the top edge of the lowest band. The initial GS profile 345

and shapes of defect potentials are depicted in Fig. 8. For 346

parameters of the PT potential that are below the threshold 347

of the spontaneous PT -symmetry breaking (as is the case 348

considered here) the spectrum is entirely real with a band 349

structure that is only slightly affected by the defect. Since the 350

effective mass is related to the curvature of the band we expect 351

that an effective mass description of the GS dynamics should 352

still be valid, at least for PT defects quite localized and with 353

imaginary parts not too large. We remark here, however, that a 354

proof of the validity of the effective mass theorem for periodic 355

PT potentials is presently lacking (notice that in our case the 356

OL is real and the PT symmetry is only coming from the 357

defect). In an effective mass description one would expect that 358

a change of sign in the effective mass can be compensated by a 359

change of sign of the defect potential. If true, this would imply 360

that the scattering properties of a GS with a positive effective 361

mass by a PT defect potential Vd should be similar to those 362

of a GS with negative effective mass scattered by a defect of 363

opposite sign −Vd . 364

To check if this is true, we have applied an initial velocity 365

to GS (v = 0.05) and constructed as in the previous cases the 366

RCT coefficients as a function of the defect strength. The 367

results are presented in Fig. 9 for the cases (a) ξ/|η| = 0.02 368

and (b) ξ/|η| = −0.02. 369

(b)

η (ξ=−0.02|η|)

RC
T

0 2 4 60

0.5

1

1.5
-Vd

(a)
FE

η (ξ=0.02|η|)

RC
T

0 2 4 60

0.5

1

1.5
-Vd

R
C
T

FIG. 9. (Color online) RCT diagram for (a) ξ = 0.02η and
(b) ξ = −0.02η. Other parameters: v = 0.05, Es = 0.475, V0 = −1.
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By comparing the RCT diagram of the GS in a semi-infinite370

gap with defect Vd [see Fig. 2(a)] with the one in the first gap371

with defect −Vd [see Fig. 9(b)], we see that, as expected, the372

scattering coefficients behave quite similarly in the two cases,373

except for the opposite behavior of the R coefficient at small374

values of |η| (notice that R is slightly larger than 1 for the375

GS in the semi-infinite gap and smaller than 1 for the GS376

in the first gap). In particular, notice the rapid growth of the377

reflection coefficient R as one approaches the higher resonance378

in both cases. The discrepancy observed in the behavior of R379

for small values of |η| can be ascribed to the different sizes380

of the GS in the two cases, as one can see from Figs. 1(a)381

and 8(a), respectively. The fact that the GS is wider in the382

first gap permits, for the same incoming velocity, a stronger383

interaction with the right side of the defect, than the one of the384

more localized GSs in the semi-infinite gap. Since the right385

side of the defect is of loss type for the GS in the first gap [see386

Fig. 8(c)] and of gain type for the GS in the semi-infinite gap387

[see Fig. 1(a)], this explains the observed discrepancy. Notice388

that this discrepancy is reduced by reducing the incoming389

GS velocity [compare Fig. 6(a) with Fig. 10(b)]. This can390

be understood from the reduction at small velocities of the391

interaction of the GS with the right side of the defect and from392

the smallness of η making the situation close to the one of393

the conservative case. Also notice that the decreasing of the394

incoming GS velocity (see Fig. 10) leads to the same effects395

discussed for GS from the semi-infinite gap (shrinking the396

transmission lines and approaching 1 of the R coefficient in397

the total reflection regions).398

A similar situation is observed for the case ξ = −0.02|η|399

(e.g., for potentials V d and −V d ) with the only difference that400

the discrepancy at small |η| is now of opposite type and the401

rapid growth at the high resonance occurs for the T coefficient402

instead of R as one can see by comparing Fig. 2(b) with403

Fig. 9(a) [also compare Fig. 6(b) with Fig. 10(a) for the case404

of a smaller velocity].405

We have also investigated the scattering properties of a406

negative mass GS by a PT defect with η < 0 (see Fig. 11).407

Notice, that due to the negative effective mass, the potential408

(a)
FE

η (ξ=0.02|η|)

RC
T

0 2 4 60

0.5

1

1.5
-Vd

R
C
T

(b)

η (ξ=−0.02|η|)

RC
T

0 2 4 60

0.5

1

1.5
-Vd

FIG. 10. (Color online) The same as in Fig. 9 but for a smaller
incoming GS velocity v = 0.02. Other parameters are fixed as in
Fig. 9.

η

R

−0.4 −0.2 00

0.5

1

1.5
(a)

0.05
0.02

-Vd

η

R

−0.4 −0.2 00

0.5

1

1.5
(b)−0.05

−0.02

-Vd

FIG. 11. (Color online) Behavior of the R coefficient for the
scattering of a GS of the first band gap with negative effective mass
v = 0.05 by a PT defect with η < 0. The ratio ξ/|η| is indicated
near the corresponding curve.

well corresponding to the real part of the PT defect will 409

be seen by the GS as a potential barrier. This case should 410

then be compared with the case η > 0 previously considered 411

for the GS of the semi-infinite gap. Indeed, we find while 412

transmission and trapping coefficients are zeros the reflection 413

coefficient, in accordance to our previous discussion for a 414

GS in the semi-infinite gap, depends on the sign of ξ and 415

can be smaller or larger than 1 as one can see in Fig. 11. 416

By comparing Fig. 11 with the corresponding Fig. 7, we 417

see that a part of the discrepancy was discussed before and 418

ascribed to the different sizes of the GS, the behavior is in 419

qualitative good correspondence with what is expected from 420

an effective mass description for two GSs of opposite effective 421

masses. 422

From the above results we conclude that GSs with opposite 423

effective masses behave quite similarly in the presence of PT 424

defect potentials of opposite signs, this being especially true 425

for parameters values close to the high resonances. 426

C. Resonant transmission and PT defect mode analysis 427

To check the relevance of defect modes in the resonant 428

transmission of a GS through a PT defect, we have explicitly 429

calculated defect modes by solving the stationary eigenvalue 430

problem associated with Eq. (1), and then compared results 431

with those obtained by direct numerical integrations. This 432

is reported in Fig. 12 from which we see that there is a 433

good agreement between stationary defect mode analysis and 434

dynamical calculations. 435

Second, we have checked that in all the considered cases the 436

positions of the peaks observed in the RCT diagrams occur 437

in correspondence with potential parameters that allow the 438

existence of defect modes with the same energy and norm of 439

the incoming GSs (see Figs. 13 and 14). In particular, in Fig. 13 440

we show the energy mismatch at the resonances between the 441

GS and defect mode for two different cases, while in Fig. 14 we 442

show, for corresponding cases, the behavior of the stationary 443

and dynamical trapping coefficients as a function of η. We see 444

from these figures that the agreement between mode analysis 445

and numerical calculations is quite good both for the energy 446

mismatch and for norms. In particular, notice that the positions 447

of the peaks is in good agreement even for higher resonances 448

where the imaginary part of the PT defect is not small, this 449

confirms the validity of the defect modes interpretation for the 450

resonant transmission of a GS through PT defects. 451
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FIG. 12. (Color online) Top three rows: Stationary defect modes
at the matching points B, C, and D of Fig. 2. Bottom two rows:
Stationary defect modes at the matching points E and F of Fig. 9. In
the left column the real (solid black) and imaginary (dashed red) parts
of the defect mode are presented and in the right column its density
(solid black) is compared to the defect mode calculated numerically
(dashed red). In each row the defect modes at matching points are
shown.

IV. MULTIPLE GS SCATTERING BY TWO PT DEFECTS452

In this section we explore the nonreciprocity (spatial453

asymmetry) of the resonant transmission [26,27] that could454

be used for an unidirectional transmission/blockage of a GS455

through a PT defect (diode effect). For this we fix parameters456

of the defect potential in the region where it is possible to457

have total reflection (transmission) for the specific ratio value458

ξ/|η| = 0.02 (−0.02). Also we refer to the specific case of459

a GS located in the semi-infinite gap depicted in Fig. 15460

(similar results can be obtained for GS of higher band gaps).461

For the above fixed ratio it is possible to observe asymmetric462

η

|E
-E
s|

−7 −6 −5 −4 −3 −2 −1 0

5 10−4

v=0
v=0.05

x
(a)

η

|E
-E

s|

0 1 2 3 4 5 6

10−3

v=0
v=0.2

(b)

FIG. 13. (Color online) Energy mismatch |E − Es | between
defect mode and incoming GS energies vs η, for ξ/|η| = 0.02,
Es = −0.125 (a) and Es = 0.475 (b). Incoming velocities are v = 0
(red, filled circles), v = 0.02 (blue, open circles) for (a), and v = 0
(red, filled circles), v = 0.2 (blue, open circles) for (b). Other
parameters are fixed as in Figs. 6 and 10.

(nonreciprocal) behavior at η = −5.8 (see Fig. 3). The results 463

of the interaction of the GS coming from the left and from the 464

right with the PT defect are shown in Fig. 15. As one can see 465

from Fig. 15(a), the total transmission of the GS occurs when 466

the GS is coming from the left, while the total reflection with 467

amplification and acceleration is observed when GS comes 468

from the right [see Fig. 15(b)]. 469

By placing two PT defects symmetrically at x1,2 = ±20π 470

with opposite sign of the imaginary part ξ1,2 = ±0.02|η| we 471

obtain that a launched GS from the left enters the intradefects 472

η

C
dy
n
,C

st

0 1 2 3 4 5 60

1 E F
(b)

η

C
dy

n
,

C
st

−7 −6 −5 −4 −3 −2 −1 00

1

(ξ=0.02|η|)

BCD
(a)

FIG. 14. (Color online) Trapping coefficient vs η corresponding
to cases considered in corresponding panels of Fig. 13 The
dynamical coefficient Cdyn (dotted red) refers to the case shown
in Figs. 6 and 10 for v = 0.02, while Cst = N/N0 corresponds to
the norm of defect modes normalized to the initial norm N0 of the
incoming GS.
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FIG. 15. (Color online) Contour plots of the GS dynamics.
Defect and GS parameters: η = −5.86, ξ/|η| = 0.02, Es = −0.125,
|v| = 0.05.

region and starts to be reflected from both defects with473

amplification. The density plot of the dynamics is shown in474

Fig. 16(a) and the dynamics of the RCT coefficients are shown475

in Fig. 16(b).476

As one can see from Fig. 16(b), the dynamics of the477

C coefficient has steplike behavior at each reflection in the478

region, between the two defects the GS are being amplified and479

becoming more localized, this eventually leads to the instabil-480

ity of the GS with emission of waves. This configuration ofPT481

defects can be seen as a kind of parametric amplifier for the GS.482

Similarly in Fig. 17 we have considered the case of two PT483

defects arranged with opposite facing loss sides so that a GS484

entering via resonant transmission into the intradefect region485

becomes completely depleted by the multiple reflections. One486

can also consider an arrangement with the facing sides of the487

defects having opposite signs so as to allow the storage of488

solitons by compensating the loss in the reflection at one side489

with the gain in the reflection at the other side (not shown here490

for brevity). PT defect devices based on GS will be discussed491

in more detail elsewhere.492

RCT
0 1 2 3 4

R

C

T

(b)(a)

FIG. 16. (Color online) Contour plots of the GS dynamics (left
panels) and time evolution of RTC coefficients (right panels) for
a GS trapped between two adjacent PT defects with opposite
facing gain sides and for parameter values x1,2 = ±20π , η = −5.8,
ξ1,2/|η| = ±0.02. Parameters of the initial GS are Es = −0.125,
v = 0.05. Notice the amplification of the GS at each reflection
and the instability with emission of radiation which appear at later
stages.

RCT
0 0.5 1

R

C

T

(b)(a)

FIG. 17. (Color online) The same as in Fig. 16 with two different
PT defects with opposite facing loss sides and for parameter
values x1,2 = ±20π , η1 = −5.95, ξ1/|η| = −0.01 and η2 = −10,
ξ2/|η| = 0.01. Parameters of the initial GS are Es = −0.125,
v = 0.05.

V. CONCLUSIONS 493

In this paper we have investigated the scattering properties 494

of gap solitons of the periodic nonlinear Schrödinger equation 495

(NLSE) in the presence of localized PT -symmetric defects. 496

The periodic potential responsible for the band-gap structure 497

and for the existence of GSs has been taken of trigonometric 498

form, while the localizedPT -symmetric defect was taken with 499

the real part of the Gaussian and the imaginary part as a product 500

of a Gaussian and a linear ramp potential (antisymmetric 501

in space). We have shown, by means of direct numerical 502

simulations, that by properly designing the amplitudes of 503

real and imaginary parts of the PT defect it is possible to 504

achieve a resonant transmission of the gap soliton through the 505

defect. We showed that this phenomenon occurs for potential 506

parameters that support localized modes inside the PT defect 507

potential with the same energy and norm of the incoming 508

soliton. The direct numerical results were found to be in good 509

agreement with the predictions for the resonant transmission 510

made in terms of stationary defect mode analysis, this extends 511

previous results for conservative defects [19] to the case of 512

PT -symmetric defects. When the imaginary amplitude of 513

the PT defect is increased we found that significant changes 514

in the scattering properties appear. In particular, we showed 515

the possibility of transmitted and reflected GS which gets 516

damped or amplified during the scattering process depending 517

on the side of the defect (loss or gain) with which the GS 518

interacts more. We investigated this both by means of the mean 519

imaginary part of the defect potential seen by the GS and by 520

trajectories followed by the center of the density distribution. 521

Scattering properties of gap solitons belonging to different 522

band gaps and having different effective masses were also 523

investigated. We showed that GS with effective masses of 524

opposite sign behave similarly in PT defect potentials of 525

opposite sign especially for parameter values close to high 526

resonances. Finally, we discussed the scattering of a GS by 527

a PT defect which leads to an unidirectional transmission or 528

blockage (diode effect), and the amplification/depletion of a 529

GS trapped between a pair of consecutive PT defects. 530
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Finally, in closing this paper we remark that since PT -531

symmetric potentials can be easily implemented in nonlinear532

optical systems, we expect the above results to be of experi-533

mental interest for systems such as arrays of nonlinear optical534

waveguides and photonic crystals.535
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